Suppr超能文献

细胞外囊泡的流式细胞术分析

Flow Cytometric Analysis of Extracellular Vesicles.

作者信息

Morales-Kastresana Aizea, Jones Jennifer C

机构信息

National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Molecular Immunogenetics & Vaccine Research Section Vaccine Branch, CCR, NCI Building 41, Room D702B, Bethesda, MD, 20892, USA.

出版信息

Methods Mol Biol. 2017;1545:215-225. doi: 10.1007/978-1-4939-6728-5_16.

Abstract

To analyze EVs with conventional flow cytometers, most researchers will find it necessary to bind EVs to beads that are large enough to be individually resolved on the flow cytometer available in their lab or facility. Although high-resolution flow cytometers are available and are being used for EV analysis, the use of these instruments for studying EVs requires careful use and validation by experienced small-particle flow cytometrists, beyond the scope of this chapter. Shown here is a method for using streptavidin-coated beads to capture biotinylated antibodies, and stain the bead-bound EVs with directly conjugated antibodies. We find that this method is a useful tool not only on its own, without further high resolution flow cytometric analysis, but also as a means for optimizing staining methods and testing new labels for later use in high resolution, single EV flow cytometric studies. The end of the chapter includes sphere-packing calculations to quantify aspects of EV- and bead-surface geometry, as a reference for use as readers of this chapter optimize their own flow cytometry assays with EVs.

摘要

为了使用传统流式细胞仪分析细胞外囊泡(EVs),大多数研究人员会发现有必要将EVs与足够大的珠子结合,以便在其实验室或机构所配备的流式细胞仪上能够逐个分辨。尽管有高分辨率流式细胞仪可供使用并用于EV分析,但使用这些仪器研究EVs需要经验丰富的小颗粒流式细胞仪操作人员谨慎操作并进行验证,这超出了本章的范围。这里展示的是一种使用链霉亲和素包被的珠子捕获生物素化抗体,并用直接偶联的抗体对结合在珠子上的EVs进行染色的方法。我们发现,这种方法不仅本身就是一种有用的工具,无需进一步的高分辨率流式细胞术分析,而且还可作为优化染色方法和测试新标记物的手段,以便日后用于高分辨率的单个EV流式细胞术研究。本章末尾包括球体堆积计算,以量化EV和珠子表面几何形状的各个方面,作为本章读者优化自己的EV流式细胞术检测的参考。

相似文献

1
Flow Cytometric Analysis of Extracellular Vesicles.
Methods Mol Biol. 2017;1545:215-225. doi: 10.1007/978-1-4939-6728-5_16.
2
Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest.
J Thromb Haemost. 2018 Jul;16(7):1423-1436. doi: 10.1111/jth.14154. Epub 2018 Jun 15.
4
Bead-Based Extracellular Vesicle Analysis Using Flow Cytometry.
Adv Biosyst. 2020 Dec;4(12):e2000203. doi: 10.1002/adbi.202000203. Epub 2020 Oct 25.
5
Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation.
J Thromb Haemost. 2018 Jun;16(6):1236-1245. doi: 10.1111/jth.14009. Epub 2018 Apr 26.
6
Measuring Extracellular Vesicles by Conventional Flow Cytometry: Dream or Reality?
Int J Mol Sci. 2020 Aug 29;21(17):6257. doi: 10.3390/ijms21176257.
7
Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry.
PLoS One. 2016 Jan 8;11(1):e0144678. doi: 10.1371/journal.pone.0144678. eCollection 2016.
8
Detection of platelet vesicles by flow cytometry.
Platelets. 2017 May;28(3):256-262. doi: 10.1080/09537104.2017.1280602. Epub 2017 Mar 2.
10
An Immunocapture-Based Assay for Detecting Multiple Antigens in Melanoma-Derived Extracellular Vesicles.
Methods Mol Biol. 2021;2265:323-344. doi: 10.1007/978-1-0716-1205-7_24.

引用本文的文献

1
Extracellular vesicles: key mediators in embryo production.
Front Vet Sci. 2025 Aug 20;12:1641966. doi: 10.3389/fvets.2025.1641966. eCollection 2025.
4
Refining Flow Cytometry-based Sorting of Plasma-derived Extracellular Vesicles.
Biol Proced Online. 2025 Aug 20;27(1):33. doi: 10.1186/s12575-025-00293-2.
5
Taking a closer look at matrix vesicle biogenesis.
J Bone Miner Res. 2025 Jul 28;40(8):931-945. doi: 10.1093/jbmr/zjaf076.
7
Periodic blinking manipulation of magnetic Janus particles with a tunable electromagnetic field for rapid sensing of extracellular vesicles.
Front Bioeng Biotechnol. 2025 Apr 25;13:1565479. doi: 10.3389/fbioe.2025.1565479. eCollection 2025.
8
Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics.
Nanoscale Adv. 2025 Jan 15;7(4):934-962. doi: 10.1039/d4na00393d. eCollection 2025 Feb 11.
9
Exosomes: Methods for Isolation and Characterization in Biological Samples.
Methods Mol Biol. 2024;2835:181-213. doi: 10.1007/978-1-0716-3995-5_17.
10
Advances in Nanoplasmonic Biosensors: Optimizing Performance for Exosome Detection Applications.
Biosensors (Basel). 2024 Jun 14;14(6):307. doi: 10.3390/bios14060307.

本文引用的文献

1
Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting.
J Extracell Vesicles. 2016 Jun 24;5:29254. doi: 10.3402/jev.v5.29254. eCollection 2016.
2
Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry.
PLoS One. 2016 Jan 8;11(1):e0144678. doi: 10.1371/journal.pone.0144678. eCollection 2016.
3
Analytical challenges of extracellular vesicle detection: A comparison of different techniques.
Cytometry A. 2016 Feb;89(2):123-34. doi: 10.1002/cyto.a.22795. Epub 2015 Dec 9.
4
Optimized exosome isolation protocol for cell culture supernatant and human plasma.
J Extracell Vesicles. 2015 Jul 17;4:27031. doi: 10.3402/jev.v4.27031. eCollection 2015.
6
Nanoparticle-based flow virometry for the analysis of individual virions.
J Clin Invest. 2013 Sep;123(9):3716-27. doi: 10.1172/JCI67042. Epub 2013 Aug 8.
7
Single vs. swarm detection of microparticles and exosomes by flow cytometry.
J Thromb Haemost. 2012 May;10(5):919-30. doi: 10.1111/j.1538-7836.2012.04683.x.
8
Isolation and characterization of RNA-containing exosomes.
J Vis Exp. 2012 Jan 9(59):e3037. doi: 10.3791/3037.
9
Isolation and characterization of exosomes from cell culture supernatants and biological fluids.
Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30.
10
Optimization of emission optics for multicolor flow cytometry.
Methods Cell Biol. 2004;75:3-22. doi: 10.1016/s0091-679x(04)75001-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验