Physics and Astronomy Department, Michigan State University , East Lansing, Michigan 48824, United States.
Department of Physics, Peking University , Beijing, 100871, China.
Nano Lett. 2016 Dec 14;16(12):7865-7869. doi: 10.1021/acs.nanolett.6b04128. Epub 2016 Dec 5.
We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.
我们已经确定了一种异常稳定的磷螺旋线圈同素异形体。我们的从头算密度泛函理论计算表明,未卷曲的、孤立的一维直线链与被称为黑磷烯的单层黑磷一样稳定。螺旋倾向和相邻线圈段之间的吸引力为螺旋同素异形体增加了额外的约 12 meV/原子的稳定化能,与体相黑磷中的约 16 meV/原子的层间吸引力相当。因此,螺旋线圈结构与目前已知的最稳定的磷同素异形体黑磷一样稳定。具有 2.4nm 的最佳半径,磷的螺旋线圈可能很好地契合甚至形成于宽碳纳米管内部。