Deringer Volker L, Pickard Chris J, Proserpio Davide M
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK.
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Angew Chem Int Ed Engl. 2020 Sep 7;59(37):15880-15885. doi: 10.1002/anie.202005031. Epub 2020 Jun 29.
The discovery of materials is increasingly guided by quantum-mechanical crystal-structure prediction, but the structural complexity in bulk and nanoscale materials remains a bottleneck. Here we demonstrate how data-driven approaches can vastly accelerate the search for complex structures, combining a machine-learning (ML) model for the potential-energy surface with efficient, fragment-based searching. We use the characteristic building units observed in Hittorf's and fibrous phosphorus to seed stochastic ("random") structure searches over hundreds of thousands of runs. Our study identifies a family of hierarchically structured allotropes based on a P8 cage as principal building unit, including one-dimensional (1D) single and double helix structures, nanowires, and two-dimensional (2D) phosphorene allotropes with square-lattice and kagome topologies. These findings yield new insight into the intriguingly diverse structural chemistry of phosphorus, and they provide an example for how ML methods may, in the long run, be expected to accelerate the discovery of hierarchical nanostructures.
材料的发现越来越受到量子力学晶体结构预测的指导,但块状和纳米级材料的结构复杂性仍然是一个瓶颈。在这里,我们展示了数据驱动方法如何通过将势能面的机器学习(ML)模型与基于片段的高效搜索相结合,极大地加速对复杂结构的搜索。我们利用在希托夫磷和纤维状磷中观察到的特征构建单元,在数十万次运行中进行随机(“随机”)结构搜索。我们的研究确定了一族以P8笼为主要构建单元的分层结构同素异形体,包括一维(1D)单螺旋和双螺旋结构、纳米线以及具有方形晶格和卡戈梅拓扑的二维(2D)磷烯同素异形体。这些发现为磷引人入胜的多样结构化学提供了新的见解,也为从长远来看ML方法如何有望加速分层纳米结构的发现提供了一个例子。