Suppr超能文献

通过增加碳纳米管纳米反应器的直径将磷的同素异形体从方柱状结构转变为平面锯齿状纳米带

Changing the Phosphorus Allotrope from a Square Columnar Structure to a Planar Zigzag Nanoribbon by Increasing the Diameter of Carbon Nanotube Nanoreactors.

作者信息

Zhang Jinying, Fu Chengcheng, Song Shixin, Du Hongchu, Zhao Dan, Huang Hongyang, Zhang Lihui, Guan Jie, Zhang Yifan, Zhao Xinluo, Ma Chuansheng, Jia Chun-Lin, Tománek David

机构信息

State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China.

The School of Physics , Southeast University , Nanjing , Jiangsu 211189 , People's Republic of China.

出版信息

Nano Lett. 2020 Feb 12;20(2):1280-1285. doi: 10.1021/acs.nanolett.9b04741. Epub 2020 Jan 8.

Abstract

Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings.

摘要

元素磷纳米结构因其大量的同素异形体而声名狼藉,这限制了它们作为半导体的用途。为了限制这种结构多样性,我们在碳纳米管(CNT)内部选择性地合成准一维磷纳米结构,碳纳米管既充当稳定的模板又充当纳米反应器。锯齿形磷纳米带优选在内径超过1.4 nm的碳纳米管中形成,而在较窄的纳米管内部观察到一种先前未知的磷的方柱状结构。我们的发现得到了电子显微镜、拉曼光谱观察以及密度泛函理论计算的支持。我们的计算结果表明,方柱状结构优选在内径约为1.0 nm的碳纳米管中形成,而黑磷纳米带优选在内径为4.1 nm的碳纳米管内部形成,锯齿形纳米带在能量上比扶手椅形纳米带更有利。我们的理论预测与实验结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验