Learning Algorithms and Systems Laboratory (LASA), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Brain-Machine Interface (CNBI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
Commun Biol. 2021 Dec 16;4(1):1406. doi: 10.1038/s42003-021-02891-8.
Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user's error expectation of the robot's current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user's preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user's preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal.
通过电动机械臂操纵器的机器人辅助可以为上肢运动障碍者提供有价值的帮助。脑机接口 (BCI) 提供了一种直观的控制辅助机器人操纵器的方法。然而,由于脑电图 (EEG) 信号的非平稳性质,BCI 的性能可能会有所不同。因此,它不能安全地用于控制可能对用户有害的错误的任务。避免障碍物就是这样一项任务。由于在机器人技术中有许多避免障碍物的技术,我们建议将控制机器人避免障碍物的任务交给机器人,而将用户选择机器人行为的任务留给用户个人喜好,因为有些用户可能更勇敢,而有些用户则更小心。我们使用基于贝叶斯推断的逆强化学习算法,结合错误相关电位 (ErrP)-BCI,推断用户的偏好,并更新障碍物回避控制器,以生成个性化的机器人轨迹。我们在使用能够拿起、放置和避免真实物体的机械臂的 13 名健康受试者的实验中验证了该方法。结果表明,该算法可以在使用不到五个演示(不一定是最优的)的情况下快速学习用户的偏好并适应机器人行为。