Suppr超能文献

累积亚组分析以减少个性化医疗临床研究中的浪费。

Cumulative subgroup analysis to reduce waste in clinical research for individualised medicine.

作者信息

Song Fujian, Bachmann Max O

机构信息

Norwich Medical School, Faculty of Medicine and Health Science, University of East Anglia, Research Park, Norwich, Norfolk, NR4 7TJ, UK.

出版信息

BMC Med. 2016 Dec 15;14(1):197. doi: 10.1186/s12916-016-0744-x.

Abstract

BACKGROUND

Although subgroup analyses in clinical trials may provide evidence for individualised medicine, their conduct and interpretation remain controversial.

METHODS

Subgroup effect can be defined as the difference in treatment effect across patient subgroups. Cumulative subgroup analysis refers to a series of repeated pooling of subgroup effects after adding data from each of related trials chronologically, to investigate the accumulating evidence for subgroup effects. We illustrated the clinical relevance of cumulative subgroup analysis in two case studies using data from published individual patient data (IPD) meta-analyses. Computer simulations were also conducted to examine the statistical properties of cumulative subgroup analysis.

RESULTS

In case study 1, an IPD meta-analysis of 10 randomised trials (RCTs) on beta blockers for heart failure reported significant interaction of treatment effects with baseline rhythm. Cumulative subgroup analysis could have detected the subgroup effect 15 years earlier, with five fewer trials and 71% less patients, than the IPD meta-analysis which first reported it. Case study 2 involved an IPD meta-analysis of 11 RCTs on treatments for pulmonary arterial hypertension that reported significant subgroup effect by aetiology. Cumulative subgroup analysis could have detected the subgroup effect 6 years earlier, with three fewer trials and 40% less patients than the IPD meta-analysis. Computer simulations have indicated that cumulative subgroup analysis increases the statistical power and is not associated with inflated false positives.

CONCLUSIONS

To reduce waste of research data, subgroup analyses in clinical trials should be more widely conducted and adequately reported so that cumulative subgroup analyses could be timely performed to inform clinical practice and further research.

摘要

背景

尽管临床试验中的亚组分析可为个体化医疗提供证据,但其实施和解读仍存在争议。

方法

亚组效应可定义为不同患者亚组间治疗效应的差异。累积亚组分析是指按时间顺序依次纳入各相关试验的数据,对亚组效应进行一系列重复合并,以探究亚组效应的累积证据。我们通过已发表的个体患者数据(IPD)荟萃分析中的数据,在两个案例研究中阐述了累积亚组分析的临床相关性。还进行了计算机模拟,以检验累积亚组分析的统计特性。

结果

在案例研究1中,一项关于β受体阻滞剂治疗心力衰竭的10项随机试验(RCT)的IPD荟萃分析报告了治疗效应与基线心律之间存在显著交互作用。与首次报告该亚组效应的IPD荟萃分析相比,累积亚组分析可提前15年检测到该亚组效应,试验数量减少5项,患者数量减少71%。案例研究2涉及一项关于肺动脉高压治疗的11项RCT的IPD荟萃分析,该分析报告了按病因分类的显著亚组效应。与IPD荟萃分析相比,累积亚组分析可提前6年检测到该亚组效应,试验数量减少3项,患者数量减少40%。计算机模拟表明,累积亚组分析可提高统计效能,且不会增加假阳性率。

结论

为减少研究数据的浪费,临床试验中的亚组分析应更广泛地开展并充分报告,以便及时进行累积亚组分析为临床实践和进一步研究提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88c/5157082/ef4a53deef0c/12916_2016_744_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验