Suppr超能文献

基于个体患者资料荟萃分析的递归分区法亚组识别。

A recursive partitioning approach for subgroup identification in individual patient data meta-analysis.

机构信息

Warwick Medical School, University of Warwick, Coventry, UK.

出版信息

Stat Med. 2018 Apr 30;37(9):1550-1561. doi: 10.1002/sim.7609. Epub 2018 Jan 31.

Abstract

BACKGROUND

Motivated by the setting of clinical trials in low back pain, this work investigated statistical methods to identify patient subgroups for which there is a large treatment effect (treatment by subgroup interaction). Statistical tests for interaction are often underpowered. Individual patient data (IPD) meta-analyses provide a framework with improved statistical power to investigate subgroups. However, conventional approaches to subgroup analyses applied in both a single trial setting and an IPD setting have a number of issues, one of them being that factors used to define subgroups are investigated one at a time. As individuals have multiple characteristics that may be related to response to treatment, alternative exploratory statistical methods are required.

METHODS

Tree-based methods are a promising alternative that systematically searches the covariate space to identify subgroups defined by multiple characteristics. A tree method in particular, SIDES, is described and extended for application in an IPD meta-analyses setting by incorporating fixed-effects and random-effects models to account for between-trial variation. The performance of the proposed extension was assessed using simulation studies. The proposed method was then applied to an IPD low back pain dataset.

RESULTS

The simulation studies found that the extended IPD-SIDES method performed well in detecting subgroups especially in the presence of large between-trial variation. The IPD-SIDES method identified subgroups with enhanced treatment effect when applied to the low back pain data.

CONCLUSIONS

This work proposes an exploratory statistical approach for subgroup analyses applicable in any research discipline where subgroup analyses in an IPD meta-analysis setting are of interest.

摘要

背景

受临床试验中腰痛设定的启发,本研究旨在探讨用于识别存在较大治疗效果(治疗与亚组相互作用)的患者亚组的统计方法。交互作用的统计检验通常功效不足。个体患者数据(IPD)荟萃分析提供了一种具有改进统计功效的框架,用于研究亚组。然而,在单一试验设置和 IPD 设置中应用的常规亚组分析方法存在许多问题,其中之一是用于定义亚组的因素是一次一个地进行研究。由于个体具有多个可能与治疗反应相关的特征,因此需要替代探索性统计方法。

方法

树状方法是一种很有前途的替代方法,它可以系统地搜索协变量空间,以确定由多个特征定义的亚组。特别是一种名为 SIDES 的树方法,被描述并扩展用于 IPD 荟萃分析设置,通过合并固定效应和随机效应模型来考虑试验间的变异性。使用模拟研究评估了所提出的扩展的性能。然后将所提出的方法应用于 IPD 腰痛数据集。

结果

模拟研究发现,扩展的 IPD-SIDES 方法在检测亚组方面表现良好,特别是在存在较大试验间变异性的情况下。当应用于腰痛数据时,IPD-SIDES 方法确定了具有增强治疗效果的亚组。

结论

本研究提出了一种探索性统计方法,适用于任何研究领域,其中 IPD 荟萃分析设置中的亚组分析很有意义。

相似文献

1
A recursive partitioning approach for subgroup identification in individual patient data meta-analysis.
Stat Med. 2018 Apr 30;37(9):1550-1561. doi: 10.1002/sim.7609. Epub 2018 Jan 31.
3
6
Comparison of aggregate and individual participant data approaches to meta-analysis of randomised trials: An observational study.
PLoS Med. 2020 Jan 31;17(1):e1003019. doi: 10.1371/journal.pmed.1003019. eCollection 2020 Jan.
7
Empirical comparison of subgroup effects in conventional and individual patient data meta-analyses.
Int J Technol Assess Health Care. 2008 Summer;24(3):358-61. doi: 10.1017/S0266462308080471.

引用本文的文献

1
Estimating individualized treatment effects using an individual participant data meta-analysis.
BMC Med Res Methodol. 2024 Mar 25;24(1):74. doi: 10.1186/s12874-024-02202-9.
2
Nonlinear effects and effect modification at the participant-level in IPD meta-analysis part 2: methodological guidance is available.
J Clin Epidemiol. 2023 Jul;159:319-329. doi: 10.1016/j.jclinepi.2023.04.014. Epub 2023 May 3.
4
Predicting personalised absolute treatment effects in individual participant data meta-analysis: An introduction to splines.
Res Synth Methods. 2022 Mar;13(2):255-283. doi: 10.1002/jrsm.1546. Epub 2022 Jan 18.
5
Exploring differential response to an emergency department-based care transition intervention.
Am J Emerg Med. 2021 Dec;50:640-645. doi: 10.1016/j.ajem.2021.09.026. Epub 2021 Sep 16.
6
A novel application of a data mining technique to study intersections in the social determinants of mental health among young Canadians.
SSM Popul Health. 2021 Oct 21;16:100946. doi: 10.1016/j.ssmph.2021.100946. eCollection 2021 Dec.
8
Model-Based Recursive Partitioning of Patients' Return Visits to Multispecialty Clinic During the 2009 H1N1 Pandemic Influenza (pH1N1).
Online J Public Health Inform. 2020 May 16;12(1):e4. doi: 10.5210/ojphi.v12i1.10576. eCollection 2020.
9
Multiple moderator meta-analysis using the R-package Meta-CART.
Behav Res Methods. 2020 Dec;52(6):2657-2673. doi: 10.3758/s13428-020-01360-0.

本文引用的文献

2
Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials.
Stat Med. 2017 Jan 15;36(1):136-196. doi: 10.1002/sim.7064. Epub 2016 Aug 3.
3
Subgroup analyses in confirmatory clinical trials: time to be specific about their purposes.
BMC Med Res Methodol. 2016 Feb 18;16:20. doi: 10.1186/s12874-016-0122-6.
4
Methods for identification and confirmation of targeted subgroups in clinical trials: A systematic review.
J Biopharm Stat. 2016;26(1):99-119. doi: 10.1080/10543406.2015.1092034.
5
A regression tree approach to identifying subgroups with differential treatment effects.
Stat Med. 2015 May 20;34(11):1818-33. doi: 10.1002/sim.6454. Epub 2015 Feb 5.
8
Qualitative interaction trees: a tool to identify qualitative treatment-subgroup interactions.
Stat Med. 2014 Jan 30;33(2):219-37. doi: 10.1002/sim.5933. Epub 2013 Aug 6.
9
Individual participant data meta-analyses should not ignore clustering.
J Clin Epidemiol. 2013 Aug;66(8):865-873.e4. doi: 10.1016/j.jclinepi.2012.12.017. Epub 2013 May 4.
10
Subgroup identification from randomized clinical trial data.
Stat Med. 2011 Oct 30;30(24):2867-80. doi: 10.1002/sim.4322. Epub 2011 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验