Suppr超能文献

关于兴奋性和抑制性突触输入之间的相关性如何最大化神经元放电的信息传输率。

On how correlations between excitatory and inhibitory synaptic inputs maximize the information rate of neuronal firing.

机构信息

Department of Neurosciences, School of Medicine, Case Western Reserve University Cleveland, OH, USA.

出版信息

Front Comput Neurosci. 2014 Jun 6;8:59. doi: 10.3389/fncom.2014.00059. eCollection 2014.

Abstract

Cortical neurons receive barrages of excitatory and inhibitory inputs which are not independent, as network structure and synaptic kinetics impose statistical correlations. Experiments in vitro and in vivo have demonstrated correlations between inhibitory and excitatory synaptic inputs in which inhibition lags behind excitation in cortical neurons. This delay arises in feed-forward inhibition (FFI) circuits and ensures that coincident excitation and inhibition do not preclude neuronal firing. Conversely, inhibition that is too delayed broadens neuronal integration times, thereby diminishing spike-time precision and increasing the firing frequency. This led us to hypothesize that the correlation between excitatory and inhibitory synaptic inputs modulates the encoding of information of neural spike trains. We tested this hypothesis by investigating the effect of such correlations on the information rate (IR) of spike trains using the Hodgkin-Huxley model in which both synaptic and membrane conductances are stochastic. We investigated two different synaptic input regimes: balanced synaptic conductances and balanced currents. Our results show that correlations arising from the synaptic kinetics, τ, and millisecond lags, δ, of inhibition relative to excitation strongly affect the IR of spike trains. In the regime of balanced synaptic currents, for short time lags (δ ~ 1 ms) there is an optimal τ that maximizes the IR of the postsynaptic spike train. Given the short time scales for monosynaptic inhibitory lags and synaptic decay kinetics reported in cortical neurons under physiological contexts, we propose that FFI in cortical circuits is poised to maximize the rate of information transfer between cortical neurons. Our results also provide a possible explanation for how certain drugs and genetic mutations affecting the synaptic kinetics can deteriorate information processing in the brain.

摘要

皮质神经元接收兴奋性和抑制性输入的冲击,但这些输入并非独立的,因为网络结构和突触动力学会产生统计相关性。在体和离体实验已经证明了抑制性和兴奋性突触输入之间存在相关性,其中抑制作用在皮质神经元中滞后于兴奋作用。这种延迟出现在前馈抑制(FFI)回路中,确保了兴奋和抑制的同时发生不会阻止神经元的放电。相反,延迟过多的抑制作用会扩大神经元的整合时间,从而降低尖峰时间精度并增加放电频率。这使我们假设兴奋性和抑制性突触输入之间的相关性会调节神经尖峰序列信息的编码。我们通过调查这种相关性对使用 Hodgkin-Huxley 模型中突触和膜电导都是随机的尖峰序列的信息速率(IR)的影响来检验这个假设。我们研究了两种不同的突触输入状态:平衡的突触电导和平衡的电流。我们的结果表明,抑制作用相对于兴奋作用的突触动力学(τ)和毫秒级延迟(δ)产生的相关性强烈影响尖峰序列的 IR。在平衡的突触电流状态下,对于短的时间延迟(δ~1ms),存在一个最佳的τ值,它可以最大化突触后尖峰序列的 IR。鉴于在生理条件下皮质神经元中单突触抑制性延迟和突触衰减动力学的时间尺度较短,我们提出,皮质回路中的 FFI 被调整到最佳状态,以最大化皮质神经元之间信息传递的速度。我们的结果还为某些影响突触动力学的药物和基因突变如何恶化大脑中的信息处理提供了一种可能的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96e2/4047963/3fdacc01052b/fncom-08-00059-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验