Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA.
Biological Systems and Engineering, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
Sci Rep. 2016 Dec 15;6:39137. doi: 10.1038/srep39137.
Toxic metals are known to inhibit DNA repair but the underlying mechanisms of inhibition are still not fully understood. DNA repair enzymes such as human uracil-DNA glycosylase (hUNG) perform the initial step in the base excision repair (BER) pathway. In this work, we showed that cadmium [Cd(II)], a known human carcinogen, inhibited all activity of hUNG at 100 μM. Computational analyses based on 2 μs equilibrium, 1.6 μs steered molecular dynamics (SMD), and QM/MM MD determined that Cd(II) ions entered the enzyme active site and formed close contacts with both D145 and H148, effectively replacing the catalytic water normally found in this position. Geometry refinement by density functional theory (DFT) calculations showed that Cd(II) formed a tetrahedral structure with D145, P146, H148, and one water molecule. This work for the first time reports Cd(II) inhibition of hUNG which was due to replacement of the catalytic water by binding the active site D145 and H148 residues. Comparison of the proposed metal binding site to existing structural data showed that D145:H148 followed a general metal binding motif favored by Cd(II). The identified motif offered structural insights into metal inhibition of other DNA repair enzymes and glycosylases.
有毒金属已知会抑制 DNA 修复,但抑制的潜在机制仍不完全清楚。DNA 修复酶,如人类尿嘧啶-DNA 糖基化酶(hUNG),在碱基切除修复(BER)途径中执行初始步骤。在这项工作中,我们表明,已知的人类致癌物镉(Cd(II))在 100μM 时抑制了 hUNG 的所有活性。基于 2μs 平衡、1.6μs 导向分子动力学(SMD)和 QM/MM MD 的计算分析表明,Cd(II) 离子进入酶的活性位点,并与 D145 和 H148 形成紧密接触,有效地取代了通常在此位置发现的催化水。密度泛函理论(DFT)计算的几何结构精修表明,Cd(II) 与 D145、P146、H148 和一个水分子形成了一个四面体结构。这项工作首次报道了 Cd(II) 对 hUNG 的抑制作用,这是由于结合活性位点 D145 和 H148 残基取代了催化水。与现有结构数据的比较表明,D145:H148 遵循了 Cd(II) 偏好的一般金属结合基序。所确定的基序为其他 DNA 修复酶和糖基化酶的金属抑制提供了结构见解。