Suppr超能文献

一种从高密度细胞外记录中识别跨物种细胞类型的深度学习策略。

A deep learning strategy to identify cell types across species from high-density extracellular recordings.

作者信息

Beau Maxime, Herzfeld David J, Naveros Francisco, Hemelt Marie E, D'Agostino Federico, Oostland Marlies, Sánchez-López Alvaro, Chung Young Yoon, Maibach Michael, Kyranakis Stephen, Stabb Hannah N, Martínez Lopera M Gabriela, Lajko Agoston, Zedler Marie, Ohmae Shogo, Hall Nathan J, Clark Beverley A, Cohen Dana, Lisberger Stephen G, Kostadinov Dimitar, Hull Court, Häusser Michael, Medina Javier F

机构信息

Wolfson Institute for Biomedical Research, University College London, London, UK.

Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.

出版信息

Cell. 2025 Apr 17;188(8):2218-2234.e22. doi: 10.1016/j.cell.2025.01.041. Epub 2025 Feb 28.

Abstract

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously recorded cell types during behavior.

摘要

高密度探针能够在整个脑回路中同时对多个神经元进行电生理记录,但无法揭示细胞类型。在此,我们开发了一种策略,可从清醒动物的细胞外记录中识别细胞类型,并揭示具有不同功能、分子和解剖学特性的神经元的计算作用。我们以小脑为实验平台,结合光遗传学和药理学,生成了一个经过精心整理的浦肯野细胞、分子层中间神经元、高尔基细胞和苔藓纤维电生理特性的真实对照库。我们训练了一个半监督深度学习分类器,该分类器基于记录神经元的波形、放电统计和所在层,以高于95%的准确率预测细胞类型。该分类器的预测结果与不同实验室使用不同探针、来自功能不同的小脑区域以及跨物种的记录的专家分类结果一致。我们的分类器通过揭示行为过程中同时记录的细胞类型的独特贡献,扩展了现代动力系统分析的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验