Cox Zachary L, Lewis Connie M, Lai Pikki, Lenihan Daniel J
Department of Pharmacy Practice, Lipscomb University College of Pharmacy, Nashville, TN; Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN.
Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN.
Am Heart J. 2017 Jan;183:40-48. doi: 10.1016/j.ahj.2016.10.001. Epub 2016 Oct 6.
We aim to validate the diagnostic performance of the first fully automatic, electronic heart failure (HF) identification algorithm and evaluate the implementation of an HF Dashboard system with 2 components: real-time identification of decompensated HF admissions and accurate characterization of disease characteristics and medical therapy.
We constructed an HF identification algorithm requiring 3 of 4 identifiers: B-type natriuretic peptide >400 pg/mL; admitting HF diagnosis; history of HF International Classification of Disease, Ninth Revision, diagnosis codes; and intravenous diuretic administration. We validated the diagnostic accuracy of the components individually (n = 366) and combined in the HF algorithm (n = 150) compared with a blinded provider panel in 2 separate cohorts. We built an HF Dashboard within the electronic medical record characterizing the disease and medical therapies of HF admissions identified by the HF algorithm. We evaluated the HF Dashboard's performance over 26 months of clinical use.
Individually, the algorithm components displayed variable sensitivity and specificity, respectively: B-type natriuretic peptide >400 pg/mL (89% and 87%); diuretic (80% and 92%); and International Classification of Disease, Ninth Revision, code (56% and 95%). The HF algorithm achieved a high specificity (95%), positive predictive value (82%), and negative predictive value (85%) but achieved limited sensitivity (56%) secondary to missing provider-generated identification data. The HF Dashboard identified and characterized 3147 HF admissions over 26 months.
Automated identification and characterization systems can be developed and used with a substantial degree of specificity for the diagnosis of decompensated HF, although sensitivity is limited by clinical data input.
我们旨在验证首个全自动电子心力衰竭(HF)识别算法的诊断性能,并评估一个HF仪表板系统的实施情况,该系统有两个组成部分:实时识别失代偿性HF入院病例以及准确描述疾病特征和药物治疗情况。
我们构建了一种HF识别算法,该算法需要4个标识符中的3个:B型利钠肽>400 pg/mL;入院时HF诊断;HF国际疾病分类第九版诊断代码病史;以及静脉使用利尿剂。我们在两个独立队列中,将各组成部分的诊断准确性分别与一个盲法专家小组进行比较(n = 366),并在HF算法中进行组合比较(n = 150)。我们在电子病历中建立了一个HF仪表板,用于描述由HF算法识别出的HF入院病例的疾病和药物治疗情况。我们评估了HF仪表板在26个月临床使用中的性能。
各算法组成部分的敏感性和特异性分别各不相同:B型利钠肽>400 pg/mL(89%和87%);利尿剂(80%和92%);以及国际疾病分类第九版代码(56%和95%)。HF算法具有较高的特异性(95%)、阳性预测值(82%)和阴性预测值(85%),但由于缺少医生生成的识别数据,其敏感性有限(56%)。HF仪表板在26个月内识别并描述了3147例HF入院病例。
尽管敏感性受到临床数据输入的限制,但可以开发并使用具有较高特异性的自动识别和描述系统来诊断失代偿性HF。