Division of Cardiology, University of California, San Francisco, USA.
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
Int J Med Inform. 2018 Dec;120:1-7. doi: 10.1016/j.ijmedinf.2018.09.016. Epub 2018 Sep 19.
Heart failure (HF) is a major clinical and public health problem, the management of which will benefit from large-scale pragmatic research that leverages electronic medical records (EMR). Requisite to using EMRs for HF research is the development of reliable algorithms to identify HF patients. We aimed to develop and validate computable phenotype algorithms to identify patients with HF using standardized data elements defined by the Patient Centered Outcomes Research Network (PCORnet) Common Data Model (CDM).
We built HF computable phenotypes utilizing the data domains of HF diagnosis codes, prescribed HF-related medications and N-terminal B-type natriuretic peptide (NT-proBNP). Algorithms were validated in a cohort (n = 76,254) drawn from Olmsted County, MN between 2010-2012 a sample of whose records were manually reviewed to confirm HF according to Framingham criteria.
The different algorithms we tested provided different tradeoffs between sensitivity and positive predictive value (PPV). The highest sensitivity (78.7%) algorithm utilized one HF diagnosis code and had the lowest PPV (68.5%). The addition of more algorithm components, such as additional HF diagnosis codes, HF medications or elevated NT-proBNP, improved the PPV while reducing sensitivity. When added to a diagnostic code, the addition of NT-proBNP (>450 pg/mL) had a similar impact compared to additional HF medication criteria, increasing PPV by ∼3-4% and decreasing sensitivity by ∼7-10%.
Algorithms derived from PCORnet CDM elements can be used to identify patients with HF without manual adjudication with reasonable sensitivity and PPV. Algorithm choice should be driven by the goal of the research.
心力衰竭(HF)是一个主要的临床和公共卫生问题,其管理将受益于利用电子病历(EMR)进行的大规模实用研究。使用 EMR 进行 HF 研究的必要条件是开发可靠的算法来识别 HF 患者。我们旨在开发和验证计算表型算法,以使用由患者为中心的结果研究网络(PCORnet)通用数据模型(CDM)定义的标准化数据元素来识别 HF 患者。
我们利用 HF 诊断代码、处方 HF 相关药物和 N 端 B 型利钠肽(NT-proBNP)的数据集构建 HF 计算表型。在明尼苏达州奥姆斯特德县(Olmsted County,MN)的队列(n=76254)中对算法进行验证,该队列在 2010-2012 年期间进行了抽样,其记录经过人工审查以根据弗雷明汉标准确认 HF。
我们测试的不同算法在敏感性和阳性预测值(PPV)之间提供了不同的权衡。敏感性最高(78.7%)的算法使用一个 HF 诊断代码,PPV 最低(68.5%)。添加更多的算法组件,如附加的 HF 诊断代码、HF 药物或升高的 NT-proBNP,虽然降低了敏感性,但提高了 PPV。当添加到诊断代码时,与附加 HF 药物标准相比,添加 NT-proBNP(>450pg/ml)具有相似的影响,PPV 增加约 3-4%,敏感性降低约 7-10%。
可以使用从 PCORnet CDM 元素派生的算法来识别 HF 患者,而无需进行手动判断,具有合理的敏感性和 PPV。算法选择应根据研究目标驱动。