Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
Sci Rep. 2016 Dec 16;6:39305. doi: 10.1038/srep39305.
Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF.
蛋白酶-抗蛋白酶失衡和氧化应激被认为是严重阻塞性肺疾病(包括慢性阻塞性肺疾病[COPD]和囊性纤维化[CF])的主要病理生理学标志,但关于它们在肺表型调节中的直接作用的信息有限。在这里,我们利用βENaC 转基因(Tg)小鼠,即先前建立的严重阻塞性肺疾病的小鼠模型,通过与 C57/BL6J 小鼠回交来产生具有较低死亡率但具有高度生理学价值的小鼠模型。C57/BL6J-βENaC-Tg 小鼠表现出更高的存活率和 COPD/CF 的关键肺异常,包括粘液分泌过度、炎症和肺气肿表型以及肺功能障碍。DNA 微阵列分析证实,蛋白酶和氧化应激依赖途径在 C57/BL6J-βENaC-Tg 小鼠的肺组织中被激活。用丝氨酸蛋白酶抑制剂 ONO-3403(卡莫司他甲酯[CM]的衍生物)而非 CM 以及抗氧化剂 N-乙酰半胱氨酸治疗 C57/BL6J-βENaC-Tg 小鼠可显著改善肺气肿和功能障碍。此外,通过 C57/BL6J-βENaC-Tg 小鼠中 VC 合成酶 SMP30 的基因缺失使内源性抗氧化剂维生素 C(VC)耗竭,可使肺表型明显加重。因此,这些评估结果表明,蛋白酶-抗蛋白酶失衡和氧化应激是加重 C57/BL6J-βENaC-Tg 小鼠肺表型的关键途径,与人类 COPD/CF 的特征一致。