Suppr超能文献

一种用于加强癫痫关联研究的数据融合方法。

A Data Fusion Approach to Enhance Association Study in Epilepsy.

作者信息

Marini Simone, Limongelli Ivan, Rizzo Ettore, Malovini Alberto, Errichiello Edoardo, Vetro Annalisa, Da Tan, Zuffardi Orsetta, Bellazzi Riccardo

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan.

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.

出版信息

PLoS One. 2016 Dec 16;11(12):e0164940. doi: 10.1371/journal.pone.0164940. eCollection 2016.

Abstract

Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.

摘要

在具有强大遗传成分的复杂疾病所带来的科学挑战中,有两个尤为突出。一个是揭示罕见和常见基因变异的作用;另一个是设计分类模型以改善临床诊断以及用于预后和个性化治疗的预测模型。在本文中,我们提出了一个数据融合框架,该框架融合了与下一代测序癫痫基因panel相关的基因、领域、通路和蛋白质 - 蛋白质相互作用数据。我们的方法允许整合来自多个基因组来源的关联信息,旨在突出那些能够引发复杂疾病发生的常见和罕见变异集。与其他方法相比,我们的方法在对癫痫患者进行分类时表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a489/5161322/b362ba3a22c2/pone.0164940.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验