Suppr超能文献

使用多核序列核关联检验(MK-SKAT)跨方法和阈值进行罕见变异检测。

Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

作者信息

Urrutia Eugene, Lee Seunggeun, Maity Arnab, Zhao Ni, Shen Judong, Li Yun, Wu Michael C

机构信息

Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48105, USA.

出版信息

Stat Interface. 2015;8(4):495-505. doi: 10.4310/SII.2015.v8.n4.a8.

Abstract

Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

摘要

对罕见基因变异的分析主要集中在基于区域的分析上,即在一个基因组区域内的一部分变异被测试与复杂性状的关联性。出现了两个重要的实际挑战。首先,很难选择使用哪种测试。其次,不清楚在一个区域内应该测试哪一组变异。这两者都取决于未知的真实自然状态。因此,我们开发了多内核序列核关联检验(MK-SKAT),它能在一系列罕见变异测试和分组中进行检验。具体来说,我们证明了几种流行的罕见变异测试是序列核关联检验的特殊情况,该检验通过核函数测量,比较性状值的成对相似性与受试者之间罕见变异基因型的相似性。选择特定的测试等同于选择一个核。同样,选择测试哪一组变异也归结为选择一个核。因此,MK-SKAT使用扰动在一系列核上进行检验。模拟和实际数据分析表明,我们的框架在各种情况下都能控制第一类错误,同时保持高功效:与特定情况下的核相比,MK-SKAT会损失功效,但比糟糕的选择具有更高的功效。

相似文献

2
Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes.
Genet Epidemiol. 2019 Feb;43(1):4-23. doi: 10.1002/gepi.22156. Epub 2018 Oct 8.
3
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
Genet Epidemiol. 2016 Dec;40(8):702-721. doi: 10.1002/gepi.21984. Epub 2016 Jul 4.
4
Likelihood ratio tests in rare variant detection for continuous phenotypes.
Ann Hum Genet. 2014 Sep;78(5):320-32. doi: 10.1111/ahg.12071.
5
On Robust Association Testing for Quantitative Traits and Rare Variants.
G3 (Bethesda). 2016 Dec 7;6(12):3941-3950. doi: 10.1534/g3.116.035485.
6
Boosting the Power of the Sequence Kernel Association Test by Properly Estimating Its Null Distribution.
Am J Hum Genet. 2016 Jul 7;99(1):104-14. doi: 10.1016/j.ajhg.2016.05.011. Epub 2016 Jun 9.
7
Optimal tests for rare variant effects in sequencing association studies.
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
8
Rare variant analysis of blood pressure phenotypes in the Genetic Analysis Workshop 18 whole genome sequencing data using sequence kernel association test.
BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S10. doi: 10.1186/1753-6561-8-S1-S10. eCollection 2014.
9
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
10

引用本文的文献

1
DrFARM: identification of pleiotropic genetic variants in genome-wide association studies.
Nat Commun. 2025 Jul 1;16(1):5789. doi: 10.1038/s41467-025-60439-4.
2
The sequence kernel association test for the proportional odds model.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf304.
4
Integrative eQTL-weighted hierarchical Cox models for SNP-set based time-to-event association studies.
J Transl Med. 2021 Oct 9;19(1):418. doi: 10.1186/s12967-021-03090-z.
5
IUSMMT: Survival mediation analysis of gene expression with multiple DNA methylation exposures and its application to cancers of TCGA.
PLoS Comput Biol. 2021 Aug 31;17(8):e1009250. doi: 10.1371/journal.pcbi.1009250. eCollection 2021 Aug.
6
Convex combination sequence kernel association test for rare-variant studies.
Genet Epidemiol. 2020 Jun;44(4):352-367. doi: 10.1002/gepi.22287. Epub 2020 Feb 26.
7
Meta-MultiSKAT: Multiple phenotype meta-analysis for region-based association test.
Genet Epidemiol. 2019 Oct;43(7):800-814. doi: 10.1002/gepi.22248. Epub 2019 Aug 21.
8
An integrative association method for omics data based on a modified Fisher's method with application to childhood asthma.
PLoS Genet. 2019 May 7;15(5):e1008142. doi: 10.1371/journal.pgen.1008142. eCollection 2019 May.
9
Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes.
Genet Epidemiol. 2019 Feb;43(1):4-23. doi: 10.1002/gepi.22156. Epub 2018 Oct 8.
10
A Data Fusion Approach to Enhance Association Study in Epilepsy.
PLoS One. 2016 Dec 16;11(12):e0164940. doi: 10.1371/journal.pone.0164940. eCollection 2016.

本文引用的文献

1
Kernel machine SNP-set testing under multiple candidate kernels.
Genet Epidemiol. 2013 Apr;37(3):267-75. doi: 10.1002/gepi.21715. Epub 2013 Mar 7.
2
Optimal tests for rare variant effects in sequencing association studies.
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
3
A general framework for detecting disease associations with rare variants in sequencing studies.
Am J Hum Genet. 2011 Sep 9;89(3):354-67. doi: 10.1016/j.ajhg.2011.07.015. Epub 2011 Sep 1.
4
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
5
Testing for an unusual distribution of rare variants.
PLoS Genet. 2011 Mar;7(3):e1001322. doi: 10.1371/journal.pgen.1001322. Epub 2011 Mar 3.
6
A new testing strategy to identify rare variants with either risk or protective effect on disease.
PLoS Genet. 2011 Feb 3;7(2):e1001289. doi: 10.1371/journal.pgen.1001289.
7
Comprehensive approach to analyzing rare genetic variants.
PLoS One. 2010 Nov 3;5(11):e13584. doi: 10.1371/journal.pone.0013584.
8
Challenges in the identification and use of rare disease-associated predisposition variants.
Curr Opin Genet Dev. 2010 Jun;20(3):277-81. doi: 10.1016/j.gde.2010.05.005.
9
10
Pooled association tests for rare variants in exon-resequencing studies.
Am J Hum Genet. 2010 Jun 11;86(6):832-8. doi: 10.1016/j.ajhg.2010.04.005. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验