Suppr超能文献

通过部分重编程在体内改善与年龄相关的特征

In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming.

作者信息

Ocampo Alejandro, Reddy Pradeep, Martinez-Redondo Paloma, Platero-Luengo Aida, Hatanaka Fumiyuki, Hishida Tomoaki, Li Mo, Lam David, Kurita Masakazu, Beyret Ergin, Araoka Toshikazu, Vazquez-Ferrer Eric, Donoso David, Roman Jose Luis, Xu Jinna, Rodriguez Esteban Concepcion, Nuñez Gabriel, Nuñez Delicado Estrella, Campistol Josep M, Guillen Isabel, Guillen Pedro, Izpisua Belmonte Juan Carlos

机构信息

Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, 30107 Guadalupe, Murcia, Spain.

出版信息

Cell. 2016 Dec 15;167(7):1719-1733.e12. doi: 10.1016/j.cell.2016.11.052.

Abstract

Aging is the major risk factor for many human diseases. In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in vivo. Here, we report that partial reprogramming by short-term cyclic expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in a mouse model of premature aging. Similarly, expression of OSKM in vivo improves recovery from metabolic disease and muscle injury in older wild-type mice. The amelioration of age-associated phenotypes by epigenetic remodeling during cellular reprogramming highlights the role of epigenetic dysregulation as a driver of mammalian aging. Establishing in vivo platforms to modulate age-associated epigenetic marks may provide further insights into the biology of aging.

摘要

衰老 是 许多 人类 疾病 的 主要 风险 因素 。 体外 研究 已 证明 , 细胞 重编程 为 多能性 可 逆转 细胞 衰老 , 但 通过 重编程 改变 衰老 过程 在 体内 尚未 得到 直接 证明 。 在此 , 我们 报告 , 通过 Oct4、Sox2、Klf4 和 c-Myc(OSKM) 的 短期 循环 表达 进行 的 部分 重编程 可改善 衰老 的细胞 和 生理 特征 并延长早衰 小鼠 模型 的 寿命 。同样 , OSKM 在体内 的 表达 可改善 老年野生型小鼠 的 代谢 疾病 和 肌肉 损伤 的恢复 情况 。 细胞 重编程 过程 中 通过 表观遗传重塑 改善 与 年龄相关 的 表型 , 突出 了 表观遗传失调 作为 哺乳动物 衰老 驱动因素 的作用 。建立 体内 平台 来 调节与 年龄相关 的 表观遗传标记 可能会为衰老生物学提供 进一步 的见解 。

相似文献

1
In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming.
Cell. 2016 Dec 15;167(7):1719-1733.e12. doi: 10.1016/j.cell.2016.11.052.
2
Anti-Aging Strategies Based on Cellular Reprogramming.
Trends Mol Med. 2016 Aug;22(8):725-738. doi: 10.1016/j.molmed.2016.06.005. Epub 2016 Jul 14.
3
In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice.
Nat Aging. 2022 Mar;2(3):243-253. doi: 10.1038/s43587-022-00183-2. Epub 2022 Mar 7.
4
Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape.
Aging Cell. 2017 Aug;16(4):870-887. doi: 10.1111/acel.12621. Epub 2017 Jun 8.
5
Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15.
6
Rejuvenation by Partial Reprogramming of the Epigenome.
Rejuvenation Res. 2017 Apr;20(2):146-150. doi: 10.1089/rej.2017.1958.
7
Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.
Science. 2016 Nov 25;354(6315). doi: 10.1126/science.aaf4445.
8
Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming.
Aging Cell. 2022 Mar;21(3):e13578. doi: 10.1111/acel.13578. Epub 2022 Mar 2.
10
Reduction of Fibrosis and Scar Formation by Partial Reprogramming In Vivo.
Stem Cells. 2018 Aug;36(8):1216-1225. doi: 10.1002/stem.2842. Epub 2018 May 25.

引用本文的文献

1
Cellular Models of Aging and Senescence.
Cells. 2025 Aug 18;14(16):1278. doi: 10.3390/cells14161278.
2
A Biophysics of Epigenetic Rejuvenation.
Cells. 2025 Aug 13;14(16):1249. doi: 10.3390/cells14161249.
3
The evolution of cancer and ageing: a history of constraint.
Nat Rev Cancer. 2025 Aug 26. doi: 10.1038/s41568-025-00861-4.
6
Exploring Epigenetic Ageing Using Direct Methylome Sequencing.
Epigenomes. 2025 Jul 14;9(3):25. doi: 10.3390/epigenomes9030025.
7
Addressing osteoblast senescence: Molecular pathways and the frontier of anti-ageing treatments.
Clin Transl Med. 2025 Jul;15(7):e70417. doi: 10.1002/ctm2.70417.
8
Gene therapy strategies for aging intervention.
Cell Insight. 2025 May 23;4(4):100254. doi: 10.1016/j.cellin.2025.100254. eCollection 2025 Aug.
9
chemical reprogramming is associated with a toxic accumulation of lipid droplets hindering rejuvenation.
bioRxiv. 2025 Jun 27:2025.06.25.661123. doi: 10.1101/2025.06.25.661123.
10
Targeting the hallmarks of aging: mechanisms and therapeutic opportunities.
Front Cardiovasc Med. 2025 Jul 1;12:1631578. doi: 10.3389/fcvm.2025.1631578. eCollection 2025.

本文引用的文献

1
Epigenetic Mechanisms of Longevity and Aging.
Cell. 2016 Aug 11;166(4):822-839. doi: 10.1016/j.cell.2016.07.050.
2
Metabolic Control of Longevity.
Cell. 2016 Aug 11;166(4):802-821. doi: 10.1016/j.cell.2016.07.031.
3
A Ribosomal Perspective on Proteostasis and Aging.
Cell Metab. 2016 Jun 14;23(6):1004-1012. doi: 10.1016/j.cmet.2016.05.013.
4
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging.
Cell Metab. 2016 Jun 14;23(6):990-1003. doi: 10.1016/j.cmet.2016.05.009.
5
Signaling Networks Determining Life Span.
Annu Rev Biochem. 2016 Jun 2;85:35-64. doi: 10.1146/annurev-biochem-060815-014451.
6
Dietary Protein, Metabolism, and Aging.
Annu Rev Biochem. 2016 Jun 2;85:5-34. doi: 10.1146/annurev-biochem-060815-014422. Epub 2016 Apr 29.
7
Autophagy maintains stemness by preventing senescence.
Nature. 2016 Jan 7;529(7584):37-42. doi: 10.1038/nature16187.
8
Epigenetic regulation of ageing: linking environmental inputs to genomic stability.
Nat Rev Mol Cell Biol. 2015 Oct;16(10):593-610. doi: 10.1038/nrm4048. Epub 2015 Sep 16.
9
Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging.
Science. 2015 Jun 5;348(6239):1160-3. doi: 10.1126/science.aaa1356. Epub 2015 Apr 30.
10
Animal models of aging research: implications for human aging and age-related diseases.
Annu Rev Anim Biosci. 2015;3:283-303. doi: 10.1146/annurev-animal-022114-110829.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验