Ardeshiri Ramtin, Mulcahy Ben, Zhen Mei, Rezai Pouya
Department of Mechanical Engineering, York University , Toronto, Ontario M3J 1P3, Canada.
Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
Biomicrofluidics. 2016 Dec 1;10(6):064111. doi: 10.1063/1.4971157. eCollection 2016 Nov.
is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology.
是生物学和神经科学中一种著名的模式生物,具有简单的细胞(959个细胞)和神经系统(302个神经元),其基因组与人类相对同源(40%)。在许多应用中,如神经和细胞成像、激光消融、显微注射和电生理学,将其横向和纵向操纵到有利的方向很重要。在本文中,我们描述了一种用于按需操纵的微电流体装置,并展示了其在对自然方向下无法有效可视化的器官和神经元成像中的应用。为了实现这一点,我们使用了电趋性技术在微通道中纵向定向线虫,然后将其插入一个定向和成像通道,在该通道中我们集成了一个可旋转的玻璃毛细管,用于将线虫定向到任何所需方向。纵向和横向定向的成功率分别为76%和100%。我们展示了我们的装置在外阴、子宫-外阴细胞(uv1)、vulB1\2(成年外阴环形细胞)以及野生型和突变线虫腹神经索的光学和荧光成像中的应用。与现有方法相比,所开发的技术能够将线虫定向到任何所需角度并保持该方向,同时为线虫提供进入途径以进行潜在的操纵后分析。这种多功能工具可潜在地用于各种应用,如神经行为成像、神经元消融、显微注射和电生理学。