Suppr超能文献

基于有序金纳米棒阵列生物芯片的表面等离子体耦合荧光增强用于超灵敏DNA分析。

Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.

作者信息

Mei Zhong, Tang Liang

机构信息

Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas 78249, United States.

出版信息

Anal Chem. 2017 Jan 3;89(1):633-639. doi: 10.1021/acs.analchem.6b02797. Epub 2016 Dec 19.

Abstract

An innovative gold nanorod (GNR) array biochip was developed to systematically investigate the localized surface plasmon resonance (LSPR)-coupled fluorescence enhancement for signal amplification in molecular beacon detection. An ordered GNR assembly in vertical standing array on a glass surface was fabricated as plasmonic substrates, resulting in dramatically intensified LSPR between adjacent nanoparticles as compared to that from an ensemble of random nanorods. We have shown that the plasmonic response of the nanoarray can be tuned by the proper choice of GNR size to overlap the fluorophore excitation and emission wavelengths greater than 600 nm. Plasmon-induced fluorescence enhancement was found to be distance-dependent with the competition between quenching and enhancement by the metal nanostructures. The augmented fluorescence enhancement by the GNR array can efficiently overcome the quenching effect of the gold nanoparticle even at close proximity. The enhancement correlates with the spectral overlap between the fluorophore excitation/emission and the plasmonic resonance of the GNR array, indicating a surface-plasmon-enhanced excitation and radiative mechanism for the amplification. From these results, the applicability of the ordered GNR array chip was extended to molecular fluorescence enhancement for practical use as a highly functional and ultrasensitive plasmonic DNA biochip in molecular beacon fashion.

摘要

开发了一种创新的金纳米棒(GNR)阵列生物芯片,用于系统研究局域表面等离子体共振(LSPR)耦合荧光增强,以在分子信标检测中进行信号放大。在玻璃表面制备了垂直排列的有序GNR组件作为等离子体基底,与随机纳米棒集合相比,相邻纳米颗粒之间的LSPR显著增强。我们已经表明,可以通过适当选择GNR尺寸来调节纳米阵列的等离子体响应,使其与大于600nm的荧光团激发和发射波长重叠。发现等离子体诱导的荧光增强与距离有关,金属纳米结构在猝灭和增强之间存在竞争。即使在非常接近的距离,GNR阵列增强的荧光也能有效克服金纳米颗粒的猝灭效应。这种增强与荧光团激发/发射和GNR阵列的等离子体共振之间的光谱重叠相关,表明存在表面等离子体增强的激发和辐射放大机制。基于这些结果,有序GNR阵列芯片的适用性扩展到分子荧光增强,可实际用作分子信标形式的高功能超灵敏等离子体DNA生物芯片。

相似文献

1
Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
Anal Chem. 2017 Jan 3;89(1):633-639. doi: 10.1021/acs.analchem.6b02797. Epub 2016 Dec 19.
2
Gold Nanorod Array Biochip for Label-Free, Multiplexed Biological Detection.
Methods Mol Biol. 2017;1571:129-141. doi: 10.1007/978-1-4939-6848-0_9.
3
Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
J Phys Chem Lett. 2015 Jun 4;6(11):2043-9. doi: 10.1021/acs.jpclett.5b00747. Epub 2015 May 18.
5
Multiplexed gold nanorod array biochip for multi-sample analysis.
Biosens Bioelectron. 2015 May 15;67:18-24. doi: 10.1016/j.bios.2014.07.041. Epub 2014 Jul 24.
6
Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.
Nanoscale. 2011 Sep 1;3(9):3849-59. doi: 10.1039/c1nr10544b. Epub 2011 Aug 8.
7
Gold nanorod biochip functionalization by antibody thiolation.
Talanta. 2015 May;136:1-8. doi: 10.1016/j.talanta.2014.11.023. Epub 2014 Nov 20.
8
Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays.
ACS Appl Mater Interfaces. 2021 Mar 10;13(9):11414-11423. doi: 10.1021/acsami.0c20303. Epub 2021 Feb 23.
9
Water dispersion of magnetic nanoparticles with selective Biofunctionality for enhanced plasmonic biosensing.
Talanta. 2016 May 1;151:23-29. doi: 10.1016/j.talanta.2016.01.007. Epub 2016 Jan 8.
10
A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A.
Biosens Bioelectron. 2014 Sep 15;59:321-7. doi: 10.1016/j.bios.2014.03.059. Epub 2014 Apr 12.

引用本文的文献

1
Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures.
Small Sci. 2023 Sep 10;3(10):2300048. doi: 10.1002/smsc.202300048. eCollection 2023 Oct.
3
Multiscale modeling of surface enhanced fluorescence.
Nanoscale Adv. 2024 May 21;6(13):3410-3425. doi: 10.1039/d4na00080c. eCollection 2024 Jun 25.
4
Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases.
Biosensors (Basel). 2024 Mar 2;14(3):130. doi: 10.3390/bios14030130.
5
Gold Nanomaterial System That Enables Dual Photothermal and Chemotherapy for Breast Cancer.
Pharmaceutics. 2023 Aug 25;15(9):2198. doi: 10.3390/pharmaceutics15092198.
6
Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes.
Sensors (Basel). 2023 May 25;23(11):5053. doi: 10.3390/s23115053.
7
Wavelength-Dependent Metal-Enhanced Fluorescence Biosensors via Resonance Energy Transfer Modulation.
Biosensors (Basel). 2023 Mar 13;13(3):376. doi: 10.3390/bios13030376.
8
Recent progress in sensing application of metal nanoarchitecture-enhanced fluorescence.
Nanoscale Adv. 2021 Mar 9;3(9):2448-2465. doi: 10.1039/d0na01050b. eCollection 2021 May 4.
9
Facile fabrication of self-assembled nanostructures of vertically aligned gold nanorods by using inkjet printing.
RSC Adv. 2021 Jun 24;11(36):22376-22380. doi: 10.1039/d1ra03900h. eCollection 2021 Jun 21.

本文引用的文献

1
Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals.
ACS Appl Mater Interfaces. 2016 May 11;8(18):11667-74. doi: 10.1021/acsami.5b12075. Epub 2016 Apr 29.
3
Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy.
Electrophoresis. 2016 Mar;37(5-6):786-9. doi: 10.1002/elps.201500535. Epub 2016 Jan 21.
4
Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae.
J Phys Chem Lett. 2013 Feb 7;4(3):496-501. doi: 10.1021/jz302018x. Epub 2013 Jan 24.
6
Systematic study of the surface plasmon resonance signals generated by cells for sensors with different characteristic lengths.
PLoS One. 2014 Oct 23;9(10):e107978. doi: 10.1371/journal.pone.0107978. eCollection 2014.
7
Multiplexed gold nanorod array biochip for multi-sample analysis.
Biosens Bioelectron. 2015 May 15;67:18-24. doi: 10.1016/j.bios.2014.07.041. Epub 2014 Jul 24.
8
A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A.
Biosens Bioelectron. 2014 Sep 15;59:321-7. doi: 10.1016/j.bios.2014.03.059. Epub 2014 Apr 12.
9
Optical aptasensors for quantitative detection of small biomolecules: a review.
Biosens Bioelectron. 2014 Sep 15;59:64-74. doi: 10.1016/j.bios.2014.03.014. Epub 2014 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验