Grobas Illobre Pablo, Lafiosca Piero, Guidone Teresa, Mazza Francesco, Giovannini Tommaso, Cappelli Chiara
Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
Nanoscale Adv. 2024 May 21;6(13):3410-3425. doi: 10.1039/d4na00080c. eCollection 2024 Jun 25.
The fluorescence response of a chromophore in the proximity of a plasmonic nanostructure can be enhanced by several orders of magnitude, yielding the so-called surface-enhanced fluorescence (SEF). An in-depth understanding of SEF mechanisms benefits from fully atomistic theoretical models because SEF signals can be non-trivially affected by the atomistic profile of the nanostructure's surface. This work presents the first fully atomistic multiscale approach to SEF, capable of describing realistic structures. The method is based on coupling density functional theory (DFT) with state-of-the-art atomistic electromagnetic approaches, allowing for reliable physically-based modeling of molecule-nanostructure interactions. Computed results remarkably demonstrate the key role of the NP morphology and atomistic features in quenching/enhancing the fluorescence signal.
等离子体纳米结构附近的发色团的荧光响应可增强几个数量级,产生所谓的表面增强荧光(SEF)。由于SEF信号会受到纳米结构表面原子轮廓的显著影响,因此对SEF机制的深入理解得益于完全原子论的理论模型。这项工作提出了第一种用于SEF的完全原子论多尺度方法,能够描述实际结构。该方法基于将密度泛函理论(DFT)与最先进的原子电磁方法相结合,从而能够对分子-纳米结构相互作用进行可靠的基于物理的建模。计算结果显著地证明了纳米粒子形态和原子特征在淬灭/增强荧光信号中的关键作用。