Suppr超能文献

不对称催化中的回收利用。

Recycling in Asymmetric Catalysis.

机构信息

Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology , SE 10044 Stockholm, Sweden.

出版信息

Acc Chem Res. 2016 Dec 20;49(12):2736-2745. doi: 10.1021/acs.accounts.6b00396. Epub 2016 Nov 14.

Abstract

Cyclic reaction networks consisting of an enantioselective product-forming step and a reverse reaction of the undesired enantiomer back to starting reactant are important for the generation of compounds with high enantiomeric purity. In order to avoid an equilibrium racemic state, a unidirectional cyclic process where product formation and regeneration of starting reactant proceed through different mechanistic pathways is required. Such processes must necessarily include a thermodynamically unfavorable step, since the product of the forward reaction is the reactant of the reverse reaction and vice versa. Thermodynamically uphill processes are ubiquitous to the function of living systems. Such systems gain the required energy by coupling to thermodynamically downhill reactions. In the same way, artificial cyclic reaction networks can be realized in systems open to mass or energy flow, and an out-of equilibrium nonracemic steady state can be maintained as long as the system is supplied with energy. In contrast to a kinetic resolution, a recycling process where the minor enantiomer is converted to starting reactant can result in a quantitative yield, but the enantiomeric purity of the product is limited by the selectivity of the catalysts used for the reactions. On the other hand, in a kinetic resolution, the slowly reacting enantiomer can always be obtained in an enantiomerically pure state, although the yield will suffer. In cyclic reaction systems which use chiral catalysts for both the forward and the reverse processes, a reinforcing effect results, and selectivities higher than those achieved by a single chiral catalyst are observed. A dynamic kinetic resolution can in principle also lead to a quantitative yield, but lacks the reinforcing effect of two chiral catalysts. Most examples of cyclic reaction networks reported in the literature are deracemizations of racemic mixtures, which proceed via oxidation of one enantiomer followed by reduction to the opposite enantiomer. We have developed cyclic reaction networks comprising a carbon-carbon bond formation. In these processes, the product is generated by the addition of a cyanide reagent to a prochiral aldehyde. This is followed by hydrolysis of the minor enantiomer of the product to generate the starting aldehyde. A unidirectional cycle is maintained by coupling to the exergonic transformation of the high potential cyanide reagent to a low potential compound, either a carboxylate or carbon dioxide. The products, which are obtained with high enantiomeric purity, serve as valuable starting materials for a variety of biologically and pharmaceutically active compounds.

摘要

由对映选择性产物形成步骤和不需要的对映体逆反应回到起始反应物的反向反应组成的循环反应网络对于生成具有高对映体纯度的化合物非常重要。为了避免平衡外消旋状态,需要进行单向循环过程,其中产物形成和起始反应物的再生通过不同的机理途径进行。这样的过程必须包括一个热力学不利的步骤,因为前向反应的产物是反向反应的反应物,反之亦然。热力学上坡过程普遍存在于生命系统的功能中。这些系统通过与热力学下坡反应耦合来获得所需的能量。同样,在向物质或能量流动开放的系统中可以实现人工循环反应网络,并且只要系统提供能量,就可以维持非平衡非外消旋的稳定状态。与动力学拆分不同,将少量对映体转化为起始反应物的回收过程可以实现定量产率,但产物的对映体纯度受用于反应的催化剂的选择性限制。另一方面,在动力学拆分中,缓慢反应的对映体总是可以以对映纯状态获得,尽管产率会受到影响。在使用手性催化剂进行正向和反向过程的循环反应系统中,会产生增强效应,并且观察到的选择性高于使用单个手性催化剂时的选择性。动态动力学拆分原则上也可以导致定量产率,但缺乏两个手性催化剂的增强效应。文献中报道的大多数循环反应网络的例子都是外消旋混合物的去消旋,它通过氧化一种对映体,然后还原为相反的对映体进行。我们已经开发了包含碳-碳键形成的循环反应网络。在这些过程中,产物是通过氰化物试剂加成到手性前手性醛生成的。随后,产物的少量对映体通过水解生成起始醛。通过将高势能氰化物试剂转化为低势能化合物(羧酸或二氧化碳)的放能转化来维持单向循环。以高对映体纯度获得的产物可用作各种生物和药物活性化合物的有价值的起始材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验