Suppr超能文献

迈向确定性和半自动的SPADE分析。

Toward deterministic and semiautomated SPADE analysis.

作者信息

Qiu Peng

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.

出版信息

Cytometry A. 2017 Mar;91(3):281-289. doi: 10.1002/cyto.a.23068. Epub 2017 Feb 24.

Abstract

SPADE stands for spanning-tree progression analysis for density-normalized events. It combines downsampling, clustering and a minimum-spanning tree to provide an intuitive visualization of high-dimensional single-cell data, which assists with the interpretation of the cellular heterogeneity underlying the data. SPADE has been widely used for analysis of high-content flow cytometry data and CyTOF data. The downsampling and clustering components of SPADE are both stochastic, which lead to stochasticity in the tree visualization it generates. Running SPADE twice on the same data may generate two different tree structures. Although they typically lead to the same biological interpretation of subpopulations present in the data, robustness of the algorithm can be improved. Another avenue of improvement is the interpretation of the SPADE tree, which involves visual inspection of multiple colored versions of the tree based on expression of measured markers. This is essentially manual gating on the SPADE tree and can benefit from automated algorithms. This article presents improvements of SPADE in both aspects above, leading to a deterministic SPADE algorithm and a software implementation for semiautomated interpretation. © 2017 International Society for Advancement of Cytometry.

摘要

SPADE代表密度归一化事件的生成树进展分析。它结合了下采样、聚类和最小生成树,以提供高维单细胞数据的直观可视化,有助于解释数据背后的细胞异质性。SPADE已广泛用于高内涵流式细胞术数据和质谱流式细胞术(CyTOF)数据的分析。SPADE的下采样和聚类组件都是随机的,这导致其生成的树状可视化具有随机性。在相同数据上运行两次SPADE可能会生成两种不同的树结构。尽管它们通常会对数据中存在的亚群产生相同的生物学解释,但算法的稳健性仍可提高。另一个改进途径是对SPADE树的解释,这涉及基于测量标记的表达对树的多个彩色版本进行目视检查。这本质上是在SPADE树上进行手动设门,并且可以受益于自动化算法。本文在上述两个方面对SPADE进行了改进,得到了一种确定性的SPADE算法和一个用于半自动解释的软件实现方案。© 2017国际细胞计量学促进协会

相似文献

1
Toward deterministic and semiautomated SPADE analysis.
Cytometry A. 2017 Mar;91(3):281-289. doi: 10.1002/cyto.a.23068. Epub 2017 Feb 24.
2
Automatically generate two-dimensional gating hierarchy from clustered cytometry data.
Cytometry A. 2018 Oct;93(10):1039-1050. doi: 10.1002/cyto.a.23577. Epub 2018 Sep 3.
3
Visualization and cellular hierarchy inference of single-cell data using SPADE.
Nat Protoc. 2016 Jul;11(7):1264-79. doi: 10.1038/nprot.2016.066. Epub 2016 Jun 16.
4
SPADEVizR: an R package for visualization, analysis and integration of SPADE results.
Bioinformatics. 2017 Mar 1;33(5):779-781. doi: 10.1093/bioinformatics/btw708.
5
Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE.
Nat Biotechnol. 2011 Oct 2;29(10):886-91. doi: 10.1038/nbt.1991.
6
Computational flow cytometric analysis to detect epidermal subpopulations in human skin.
Biomed Eng Online. 2021 Feb 17;20(1):22. doi: 10.1186/s12938-021-00858-8.
8
Cluster stability in the analysis of mass cytometry data.
Cytometry A. 2017 Jan;91(1):73-84. doi: 10.1002/cyto.a.23001. Epub 2016 Oct 18.
9
The end of gating? An introduction to automated analysis of high dimensional cytometry data.
Eur J Immunol. 2016 Jan;46(1):34-43. doi: 10.1002/eji.201545774. Epub 2015 Nov 30.
10
Identification of Vaccine-Altered Circulating B Cell Phenotypes Using Mass Cytometry and a Two-Step Clustering Analysis.
J Immunol. 2016 Jun 1;196(11):4814-31. doi: 10.4049/jimmunol.1502005. Epub 2016 May 2.

引用本文的文献

2
How to Prepare Spectral Flow Cytometry Datasets for High Dimensional Data Analysis: A Practical Workflow.
Front Immunol. 2021 Nov 19;12:768113. doi: 10.3389/fimmu.2021.768113. eCollection 2021.
3
T lymphocyte and monocyte subsets are dysregulated in type 1 diabetes patients with peripheral neuropathic pain.
Brain Behav Immun Health. 2021 Jun 9;15:100283. doi: 10.1016/j.bbih.2021.100283. eCollection 2021 Aug.
4
Dual delivery of IL-10 and AT-RvD1 from PEG hydrogels polarize immune cells towards pro-regenerative phenotypes.
Biomaterials. 2021 Jan;268:120475. doi: 10.1016/j.biomaterials.2020.120475. Epub 2020 Nov 28.
5
Mass Cytometry Defines Virus-Specific CD4 T Cells in Influenza Vaccination.
Immunohorizons. 2020 Dec 11;4(12):774-788. doi: 10.4049/immunohorizons.1900097.
6
Agile workflow for interactive analysis of mass cytometry data.
Bioinformatics. 2021 Jun 9;37(9):1263-1268. doi: 10.1093/bioinformatics/btaa946.
7
VoPo leverages cellular heterogeneity for predictive modeling of single-cell data.
Nat Commun. 2020 Jul 27;11(1):3738. doi: 10.1038/s41467-020-17569-8.
8
Risk-associated alterations in marrow T cells in pediatric leukemia.
JCI Insight. 2020 Aug 20;5(16):140179. doi: 10.1172/jci.insight.140179.
9
A Cancer Biologist's Primer on Machine Learning Applications in High-Dimensional Cytometry.
Cytometry A. 2020 Aug;97(8):782-799. doi: 10.1002/cyto.a.24158. Epub 2020 Jun 30.
10
Recent Advances in Computer-Assisted Algorithms for Cell Subtype Identification of Cytometry Data.
Front Cell Dev Biol. 2020 Apr 28;8:234. doi: 10.3389/fcell.2020.00234. eCollection 2020.

本文引用的文献

1
Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data.
Methods. 2015 Jul 1;82:55-63. doi: 10.1016/j.ymeth.2015.05.008. Epub 2015 May 13.
2
Computational prediction of manually gated rare cells in flow cytometry data.
Cytometry A. 2015 Jul;87(7):594-602. doi: 10.1002/cyto.a.22654. Epub 2015 Mar 9.
3
Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E607-15. doi: 10.1073/pnas.1416756112. Epub 2015 Feb 2.
6
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.
PLoS Comput Biol. 2013;9(7):e1003130. doi: 10.1371/journal.pcbi.1003130. Epub 2013 Jul 11.
7
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
Nat Biotechnol. 2013 Jun;31(6):545-52. doi: 10.1038/nbt.2594. Epub 2013 May 19.
8
Critical assessment of automated flow cytometry data analysis techniques.
Nat Methods. 2013 Mar;10(3):228-38. doi: 10.1038/nmeth.2365. Epub 2013 Feb 10.
9
CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data.
Bioinformatics. 2012 Sep 15;28(18):2400-1. doi: 10.1093/bioinformatics/bts425. Epub 2012 Jul 10.
10
Inferring phenotypic properties from single-cell characteristics.
PLoS One. 2012;7(5):e37038. doi: 10.1371/journal.pone.0037038. Epub 2012 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验