Suppr超能文献

小尺度下锂的力学性能增强及其温度依赖性及其对锂金属负极的影响。

Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes.

作者信息

Xu Chen, Ahmad Zeeshan, Aryanfar Asghar, Viswanathan Venkatasubramanian, Greer Julia R

机构信息

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125;

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):57-61. doi: 10.1073/pnas.1615733114. Epub 2016 Dec 19.

Abstract

Most next-generation Li ion battery chemistries require a functioning lithium metal (Li) anode. However, its application in secondary batteries has been inhibited because of uncontrollable dendrite growth during cycling. Mechanical suppression of dendrite growth through solid polymer electrolytes (SPEs) or through robust separators has shown the most potential for alleviating this problem. Studies of the mechanical behavior of Li at any length scale and temperature are limited because of its extreme reactivity, which renders sample preparation, transfer, microstructure characterization, and mechanical testing extremely challenging. We conduct nanomechanical experiments in an in situ scanning electron microscope and show that micrometer-sized Li attains extremely high strengths of 105 MPa at room temperature and of 35 MPa at 90 °C. We demonstrate that single-crystalline Li exhibits a power-law size effect at the micrometer and submicrometer length scales, with the strengthening exponent of -0.68 at room temperature and of -1.00 at 90 °C. We also report the elastic and shear moduli as a function of crystallographic orientation gleaned from experiments and first-principles calculations, which show a high level of anisotropy up to the melting point, where the elastic and shear moduli vary by a factor of ∼4 between the stiffest and most compliant orientations. The emergence of such high strengths in small-scale Li and sensitivity of this metal's stiffness to crystallographic orientation help explain why the existing methods of dendrite suppression have been mainly unsuccessful and have significant implications for practical design of future-generation batteries.

摘要

大多数下一代锂离子电池化学体系都需要一个能正常工作的锂金属(Li)负极。然而,由于循环过程中枝晶生长不可控,其在二次电池中的应用受到了限制。通过固体聚合物电解质(SPEs)或坚固的隔膜对枝晶生长进行机械抑制,在缓解这一问题方面显示出了最大的潜力。由于锂的极端反应性,在任何长度尺度和温度下对锂的力学行为进行研究都很有限,这使得样品制备、转移、微观结构表征和力学测试极具挑战性。我们在原位扫描电子显微镜中进行了纳米力学实验,结果表明,微米尺寸的锂在室温下具有高达105 MPa的极高强度,在90°C时为35 MPa。我们证明,单晶锂在微米和亚微米长度尺度上表现出幂律尺寸效应,室温下的强化指数为-0.68,90°C时为-1.00。我们还报告了从实验和第一性原理计算中得出的弹性模量和剪切模量与晶体取向的函数关系,结果表明,在熔点之前,弹性模量和剪切模量具有高度的各向异性,在最硬和最软的取向之间,弹性模量和剪切模量相差约4倍。小尺寸锂中出现如此高的强度以及这种金属的刚度对晶体取向的敏感性,有助于解释为什么现有的枝晶抑制方法主要未取得成功,并且对下一代电池的实际设计具有重要意义。

相似文献

5
Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes.无枝晶锂金属负极的温度依赖性成核与生长
Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11364-11368. doi: 10.1002/anie.201905251. Epub 2019 Jul 8.
8
Multi-Scale Mechanical Behavior of the LiPS Solid-Phase Electrolyte.锂硫固态电解质的多尺度力学行为
ACS Appl Mater Interfaces. 2016 Nov 2;8(43):29573-29579. doi: 10.1021/acsami.6b06612. Epub 2016 Oct 18.

引用本文的文献

4
Characterizing Electrode Materials and Interfaces in Solid-State Batteries.固态电池中电极材料及界面的特性研究
Chem Rev. 2025 Feb 26;125(4):2009-2119. doi: 10.1021/acs.chemrev.4c00584. Epub 2025 Feb 4.
5
Electro-chemo-mechanics of anode-free solid-state batteries.无阳极固态电池的电化学力学
Nat Mater. 2025 May;24(5):673-681. doi: 10.1038/s41563-024-02055-z. Epub 2025 Jan 2.

本文引用的文献

3
Surface-controlled dislocation multiplication in metal micropillars.金属微柱中表面控制的位错增殖
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14304-7. doi: 10.1073/pnas.0806118105. Epub 2008 Sep 11.
4
Generalized Gradient Approximation Made Simple.广义梯度近似简化法
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865.
5
Projector augmented-wave method.投影增强波方法。
Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979. doi: 10.1103/physrevb.50.17953.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验