Feng Bing-Jian
Department of Dermatology, University of Utah, Salt Lake City, Utah.
Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
Hum Mutat. 2017 Mar;38(3):243-251. doi: 10.1002/humu.23158. Epub 2017 Jan 28.
To interpret genetic variants discovered from next-generation sequencing, integration of heterogeneous information is vital for success. This article describes a framework named PERCH (Polymorphism Evaluation, Ranking, and Classification for a Heritable trait), available at http://BJFengLab.org/. It can prioritize disease genes by quantitatively unifying a new deleteriousness measure called BayesDel, an improved assessment of the biological relevance of genes to the disease, a modified linkage analysis, a novel rare-variant association test, and a converted variant call quality score. It supports data that contain various combinations of extended pedigrees, trios, and case-controls, and allows for a reduced penetrance, an elevated phenocopy rate, liability classes, and covariates. BayesDel is more accurate than PolyPhen2, SIFT, FATHMM, LRT, Mutation Taster, Mutation Assessor, PhyloP, GERP++, SiPhy, CADD, MetaLR, and MetaSVM. The overall approach is faster and more powerful than the existing quantitative method pVAAST, as shown by the simulations of challenging situations in finding the missing heritability of a complex disease. This framework can also classify variants of unknown significance (variants of uncertain significance) by quantitatively integrating allele frequencies, deleteriousness, association, and co-segregation. PERCH is a versatile tool for gene prioritization in gene discovery research and variant classification in clinical genetic testing.
为了解释从下一代测序中发现的基因变异,整合异质信息对于成功至关重要。本文介绍了一个名为PERCH(可遗传性状的多态性评估、排序和分类)的框架,可在http://BJFengLab.org/上获取。它可以通过定量统一一种名为BayesDel的新的有害性度量、对基因与疾病的生物学相关性的改进评估、改良的连锁分析、一种新颖的罕见变异关联测试以及转换后的变异调用质量得分,来对疾病基因进行优先级排序。它支持包含扩展家系、三联体和病例对照的各种组合的数据,并允许存在降低的外显率、升高的拟表型率、易患性类别和协变量。BayesDel比PolyPhen2、SIFT、FATHMM、LRT、Mutation Taster、Mutation Assessor、PhyloP、GERP++、SiPhy、CADD、MetaLR和MetaSVM更准确。如在寻找复杂疾病的缺失遗传力的具有挑战性情况的模拟中所示,整体方法比现有的定量方法pVAAST更快且更强大。该框架还可以通过定量整合等位基因频率、有害性、关联性和共分离来对意义未明的变异(意义不确定的变异)进行分类。PERCH是基因发现研究中进行基因优先级排序和临床基因检测中进行变异分类的通用工具。