Suppr超能文献

受体饱和条件下用于体内定量癌细胞表面受体的广义双试剂动力学模型

Generalized paired-agent kinetic model for in vivo quantification of cancer cell-surface receptors under receptor saturation conditions.

作者信息

Sadeghipour N, Davis S C, Tichauer K M

机构信息

Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

出版信息

Phys Med Biol. 2017 Jan 21;62(2):394-414. doi: 10.1088/1361-6560/62/2/394. Epub 2016 Dec 20.

Abstract

New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only 'trace' levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean  ±  sd): GSRTM 0  ±  1 and SRTM 50  ±  1) and match the SRTM accuracy in non-saturated conditions (% error (mean  ±  sd): GSRTM 5  ±  5 and SRTM 0  ±  5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general 'rule-of-thumb' algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological information about the tissue. These studies suggest that the GSRTM is necessary when receptor saturation exceeds 20% and highlight the potential for GSRTM to accurately measure receptor concentrations under saturation conditions, such as might be required during high dose drug studies, or for imaging applications where high concentrations of imaging agent are required to optimize signal-to-noise conditions. This model can also be applied to PET and SPECT imaging studies that tend to suffer from noisier data, but require one less parameter to fit if images are converted to imaging agent concentration (quantitative PET/SPECT).

摘要

新型精准医学药物通常通过与特定的细胞表面癌症受体结合来发挥作用,因此其疗效高度依赖于这些受体的可用性以及每个细胞的受体浓度。双试剂分子成像可以提供体内受体状态的定量信息,尤其是在肿瘤组织中;然而,迄今为止,已发表的双试剂定量成像方法要求与受体浓度相比,仅存在“微量”水平的成像剂。这一严格要求可能会限制其适用性,特别是在药物结合研究中,这类研究旨在报告用药物部分使受体饱和后产生的生物学效应。为了扩展双试剂成像的适用范围,这项工作提出了一种用于双试剂成像的广义简化参考组织模型(GSRTM),该模型旨在近似非受体饱和和受体饱和条件下的受体浓度。广泛的模拟研究表明,在受体饱和条件下,使用GSRTM恢复的肿瘤受体浓度估计值比标准的简单参考组织模型(SRTM)更准确(误差百分比(平均值±标准差):GSRTM为0±1,SRTM为50±1),并且在非饱和条件下与SRTM的准确性相当(误差百分比(平均值±标准差):GSRTM为5±5,SRTM为0±5)。为了进一步测试该方法,将GSRTM估计的受体浓度与从体内小鼠肿瘤异种移植模型数据中提取的SRTM估计值进行了比较。在受体饱和度较低的肿瘤(可能处于饱和状态)中,观察到GSRTM估计值与SRTM存在偏差。最后,提出了一种通用的“经验法则”算法,用于根据所使用的药物或成像剂的剂量和药代动力学信息以及组织的生理信息,估计在给定组织中可能达到的受体饱和预期水平。这些研究表明,当受体饱和度超过20%时,GSRTM是必要的,并突出了GSRTM在饱和条件下准确测量受体浓度的潜力,例如在高剂量药物研究期间可能需要,或者对于需要高浓度成像剂来优化信噪比条件的成像应用。该模型也可应用于PET和SPECT成像研究,这类研究往往存在噪声较大的数据,但如果将图像转换为成像剂浓度(定量PET/SPECT),则需要拟合的参数少一个。

相似文献

引用本文的文献

本文引用的文献

1
Molecular Imaging of Biomarkers in Breast Cancer.乳腺癌生物标志物的分子成像
J Nucl Med. 2016 Feb;57 Suppl 1(Suppl 1):53S-9S. doi: 10.2967/jnumed.115.157909.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验