Radzvilavicius Arunas L, Hadjivasiliou Zena, Pomiankowski Andrew, Lane Nick
Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom.
Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.
PLoS Biol. 2016 Dec 20;14(12):e2000410. doi: 10.1371/journal.pbio.2000410. eCollection 2016 Dec.
The origin of the germline-soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes.
生殖细胞与体细胞区分的起源是一个尚未解决的基本问题。植物和基础后生动物没有生殖细胞系,而是从体细胞组织中的多能干细胞产生配子(体细胞配子发生)。相比之下,大多数两侧对称动物在发育早期就隔离出专门的生殖细胞系。我们建立了一个进化模型,表明对线粒体质量的选择驱动了生殖细胞系的进化。在具有低线粒体复制错误率的生物体中,突变在多个细胞分裂中的分离产生变异,使得选择能够通过体细胞配子发生来优化配子质量。较高的突变率促进早期生殖细胞系的隔离。我们还考虑了卵式生殖(一种充满线粒体的大型雌性配子)如何改变对生殖细胞系的选择。卵式生殖是有益的,因为它减少了早期发育中的线粒体分离,通过限制组织间的变异提高了成年个体的适应性。但它也限制了早期隔离的卵母细胞之间的变异,损害了配子质量。卵母细胞的变异通过生殖细胞系细胞的增殖得以恢复,产生的生殖细胞数量超过严格所需,这解释了两侧对称动物中前体细胞的随机淘汰(闭锁)现象。与其他生殖细胞系进化模型不同,对线粒体质量的选择可以解释植物和基础后生动物中体细胞配子发生的稳定性、所有具有组织分化的植物和动物中卵式生殖的进化,以及驱动活跃两侧对称动物早期生殖细胞系隔离的突变力。寒武纪大爆发中能动两侧对称动物捕食行为的起源可能增加了组织更新率和线粒体复制错误率,进而推动了生殖细胞系的进化和复杂发育过程的出现。