Long Matthew R, Reed Jennifer L
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
Bioinformatics. 2017 Mar 15;33(6):893-900. doi: 10.1093/bioinformatics/btw706.
Incorporating experimental data into constraint-based models can improve the quality and accuracy of their metabolic flux predictions. Unfortunately, routinely and easily measured experimental data such as growth rates, extracellular fluxes, transcriptomics and even proteomics are not always sufficient to significantly improve metabolic flux predictions.
We developed a new method (called REPPS) for incorporating experimental measurements of growth rates and extracellular fluxes from a set of perturbed reference strains (RSs) and a parental strain (PS) to substantially improve the predicted flux distribution of the parental strain. Using data from five single gene knockouts and the wild type strain, we decrease the mean squared error of predicted central metabolic fluxes by ∼47% compared to parsimonious flux balance analysis (pFBA). This decrease in error further improves flux predictions for new knockout strains. Furthermore, REPPS is less sensitive to the completeness of the metabolic network than pFBA.
Code is available in the Supplementary data available at Bioinformatics online.
Supplementary data are available at Bioinformatics online.
将实验数据纳入基于约束的模型可以提高其代谢通量预测的质量和准确性。不幸的是,常规且易于测量的实验数据,如生长速率、细胞外通量、转录组学甚至蛋白质组学数据,并不总是足以显著改善代谢通量预测。
我们开发了一种新方法(称为REPPS),用于纳入来自一组扰动参考菌株(RSs)和亲本菌株(PS)的生长速率和细胞外通量的实验测量值,以大幅改善亲本菌株的预测通量分布。使用来自五个单基因敲除和野生型菌株的数据,与简约通量平衡分析(pFBA)相比,我们将预测的中心代谢通量的均方误差降低了约47%。误差的这种降低进一步改善了对新敲除菌株的通量预测。此外,与pFBA相比,REPPS对代谢网络完整性的敏感性较低。
代码可在《生物信息学》在线版的补充数据中获取。
补充数据可在《生物信息学》在线版获取。