Suppr超能文献

利用新型超立方缩小算法,在酶丰度指导下预测全基因组通量。

Genome-scale fluxes predicted under the guidance of enzyme abundance using a novel hyper-cube shrink algorithm.

机构信息

Department of Pharmacology and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.

School of Life Science, Peking University, Beijing 100871, China.

出版信息

Bioinformatics. 2018 Feb 1;34(3):502-510. doi: 10.1093/bioinformatics/btx574.

Abstract

MOTIVATION

One of the long-expected goals of genome-scale metabolic modelling is to evaluate the influence of the perturbed enzymes on flux distribution. Both ordinary differential equation (ODE) models and constraint-based models, like Flux balance analysis (FBA), lack the capacity to perform metabolic control analysis (MCA) for large-scale networks.

RESULTS

In this study, we developed a hyper-cube shrink algorithm (HCSA) to incorporate the enzymatic properties into the FBA model by introducing a pseudo reaction V constrained by enzymatic parameters. Our algorithm uses the enzymatic information quantitatively rather than qualitatively. We first demonstrate the concept by applying HCSA to a simple three-node network, whereby we obtained a good correlation between flux and enzyme abundance. We then validate its prediction by comparison with ODE and with a synthetic network producing voilacein and analogues in Saccharomyces cerevisiae. We show that HCSA can mimic the state-state results of ODE. Finally, we show its capability of predicting the flux distribution in genome-scale networks by applying it to sporulation in yeast. We show the ability of HCSA to operate without biomass flux and perform MCA to determine rate-limiting reactions.

AVAILABILITY AND IMPLEMENTATION

Algorithm was implemented by Matlab and C ++. The code is available at https://github.com/kekegg/HCSA.

CONTACT

xiezhengwei@hsc.pku.edu.cn or qi@pku.edu.cn.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

基因组规模代谢建模的长期预期目标之一是评估受扰酶对通量分布的影响。常微分方程 (ODE) 模型和基于约束的模型(如通量平衡分析 (FBA))都缺乏对大规模网络进行代谢控制分析 (MCA) 的能力。

结果

在这项研究中,我们开发了一种超立方收缩算法 (HCSA),通过引入受酶参数约束的伪反应 V 将酶的性质纳入 FBA 模型。我们的算法定量而不是定性地使用酶信息。我们首先通过将 HCSA 应用于一个简单的三节点网络来演示该概念,由此我们获得了通量与酶丰度之间的良好相关性。然后,我们通过与 ODE 和在酿酒酵母中产生 voilacein 和类似物的合成网络进行比较来验证其预测。我们表明 HCSA 可以模拟 ODE 的状态-状态结果。最后,我们通过将其应用于酵母的孢子形成来展示其在基因组规模网络中预测通量分布的能力。我们展示了 HCSA 能够在没有生物质通量的情况下运行并执行 MCA 来确定限速反应的能力。

可用性和实现

算法是用 Matlab 和 C++ 实现的。代码可在 https://github.com/kekegg/HCSA 获得。

联系方式

xiezhengwei@hsc.pku.edu.cnqi@pku.edu.cn

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验