European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.
Nature. 2017 Jan 5;541(7635):117-121. doi: 10.1038/nature20594. Epub 2016 Dec 21.
The heterotrimeric influenza polymerase (FluPol), comprising subunits PA, PB1 and PB2, binds to the conserved 5' and 3' termini (the 'promoter') of each of the eight single-stranded viral RNA (vRNA) genome segments and performs both transcription and replication of vRNA in the infected cell nucleus. To transcribe viral mRNAs, FluPol associates with cellular RNA polymerase II (Pol II), which enables it to take 5'-capped primers from nascent Pol II transcripts. Here we present a co-crystal structure of bat influenza A polymerase bound to a Pol II C-terminal domain (CTD) peptide mimic, which shows two distinct phosphoserine-5 (SeP5)-binding sites in the polymerase PA subunit, accommodating four CTD heptad repeats overall. Mutagenesis of the SeP5-contacting basic residues (PA K289, R454, K635 and R638) weakens CTD repeat binding in vitro without affecting the intrinsic cap-primed (transcription) or unprimed (replication) RNA synthesis activity of recombinant polymerase, whereas in cell-based minigenome assays the same mutations substantially reduce overall polymerase activity. Only recombinant viruses with a single mutation in one of the SeP5-binding sites can be rescued, but these viruses are severely attenuated and genetically unstable. Several previously described mutants that modulate virulence can be rationalized by our results, including a second site mutation (PA(C453R)) that enables the highly attenuated mutant virus (PA(R638A)) to revert to near wild-type infectivity. We conclude that direct binding of FluPol to the SeP5 Pol II CTD is fine-tuned to allow efficient viral transcription and propose that the CTD-binding site on FluPol could be targeted for antiviral drug development.
甲型流感病毒聚合酶(FluPol)由 PA、PB1 和 PB2 三个亚基组成,能与每个 8 个单链病毒 RNA(vRNA)基因组片段的保守 5' 和 3' 末端(即“启动子”)结合,并在受感染的细胞核内完成 vRNA 的转录和复制。为了转录病毒 mRNA,FluPol 与细胞 RNA 聚合酶 II(Pol II)结合,从而能够从新生 Pol II 转录本中获取 5' 加帽引物。在此,我们展示了甲型流感病毒聚合酶与 Pol II C 端结构域(CTD)肽模拟物结合的共晶结构,该结构显示聚合酶 PA 亚基中有两个不同的磷酸丝氨酸-5(SeP5)结合位点,总共容纳了四个 CTD 七肽重复序列。对接触 SeP5 的碱性残基(PA K289、R454、K635 和 R638)进行突变会削弱 CTD 重复序列在体外的结合,但不会影响重组聚合酶的固有帽引物启动(转录)或无引物启动(复制)RNA 合成活性,而在基于细胞的小基因实验中,相同的突变会大大降低聚合酶的整体活性。只有一个 SeP5 结合位点发生单一突变的重组病毒才能被拯救,但这些病毒的毒力严重降低且遗传不稳定。我们的结果可以解释几种以前描述的调节病毒毒力的突变体,包括第二个点突变(PA(C453R)),该突变使高度减毒的突变病毒(PA(R638A))能够恢复到接近野生型的感染力。我们得出结论,FluPol 与 SeP5 Pol II CTD 的直接结合经过了精细调整,以允许有效的病毒转录,并提出 FluPol 上的 CTD 结合位点可能成为抗病毒药物开发的目标。