Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité Biologie des ARN et Virus Influenza, Paris, France.
European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France.
PLoS Pathog. 2022 May 23;18(5):e1010328. doi: 10.1371/journal.ppat.1010328. eCollection 2022 May.
During annual influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs), can become predominant and cause severe morbidity and mortality. Phylogenetic analyses suggest that IAVs (primarily avian viruses) and IBVs (primarily human viruses) have diverged over long time scales. Identifying their common and distinctive features is an effective approach to increase knowledge about the molecular details of influenza infection. The virus-encoded RNA-dependent RNA polymerases (FluPolB and FluPolA) are PB1-PB2-PA heterotrimers that perform transcription and replication of the viral genome in the nucleus of infected cells. Initiation of viral mRNA synthesis requires a direct association of FluPol with the host RNA polymerase II (RNAP II), in particular the repetitive C-terminal domain (CTD) of the major RNAP II subunit, to enable "cap-snatching" whereby 5'-capped oligomers derived from nascent RNAP II transcripts are pirated to prime viral transcription. Here, we present the first high-resolution co-crystal structure of FluPolB bound to a CTD mimicking peptide at a binding site crossing from PA to PB2. By performing structure-based mutagenesis of FluPolB and FluPolA followed by a systematic investigation of FluPol-CTD binding, FluPol activity and viral phenotype, we demonstrate that IBVs and IAVs have evolved distinct binding interfaces to recruit the RNAP II CTD, despite the CTD sequence being highly conserved across host species. We find that the PB2 627 subdomain, a major determinant of FluPol-host cell interactions and IAV host-range, is involved in CTD-binding for IBVs but not for IAVs, and we show that FluPolB and FluPolA bind to the host RNAP II independently of the CTD. Altogether, our results suggest that the CTD-binding modes of IAV and IBV may represent avian- and human-optimized binding modes, respectively, and that their divergent evolution was shaped by the broader interaction network between the FluPol and the host transcriptional machinery.
在每年的流感流行期间,乙型流感病毒(IBV)与甲型流感病毒(IAV)共同流行,可能会成为主要病原体,并导致严重的发病率和死亡率。系统发育分析表明,IAV(主要是禽源病毒)和 IBV(主要是人源病毒)在很长的时间尺度上已经分化。确定它们的共同和独特特征是增加对流感感染分子细节的认识的有效方法。病毒编码的 RNA 依赖性 RNA 聚合酶(FluPolB 和 FluPolA)是 PB1-PB2-PA 三聚体,在感染细胞的细胞核中执行病毒基因组的转录和复制。病毒 mRNA 合成的起始需要 FluPol 与宿主 RNA 聚合酶 II(RNAP II)的直接结合,特别是 RNAP II 大亚基的重复 C 末端结构域(CTD),以实现“帽抢夺”,即从新生的 RNAP II 转录本衍生的 5'-帽寡聚物被劫持以启动病毒转录。在这里,我们展示了第一个与跨越 PA 到 PB2 的结合位点结合的 CTD 模拟肽结合的 FluPolB 的高分辨率共晶结构。通过对 FluPolB 和 FluPolA 进行基于结构的突变,并对 FluPol-CTD 结合、FluPol 活性和病毒表型进行系统研究,我们证明尽管 CTD 序列在宿主物种中高度保守,但 IBV 和 IAV 已经进化出不同的结合界面来招募 RNAP II CTD。我们发现,PB2 627 亚结构域是 FluPol 与宿主细胞相互作用和 IAV 宿主范围的主要决定因素,参与了 IBV 的 CTD 结合,但不参与 IAV 的 CTD 结合,并且我们表明 FluPolB 和 FluPolA 独立于 CTD 结合宿主 RNAP II。总之,我们的结果表明,IAV 和 IBV 的 CTD 结合模式可能分别代表禽源和人源优化的结合模式,它们的趋异进化是由 FluPol 和宿主转录机制之间更广泛的相互作用网络塑造的。