Suppr超能文献

使用基因本体工具生成具有“IS_A”关系的全新蛋白质-蛋白质相互作用网络。

Using the Gene Ontology tool to produce de novo protein-protein interaction networks with IS_A relationship.

作者信息

Oliveira G S, Santos A R

机构信息

Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

Faculdade de Computação, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil

出版信息

Genet Mol Res. 2016 Dec 19;15(4):gmr-15-04-gmr.15049273. doi: 10.4238/gmr15049273.

Abstract

Since the first assembled genomes, gene sequences alone have not been sufficient to understand complex metabolic processes involving several genes, each playing distinct roles. To identify their roles, a network of interactions, wherein each gene is a node, should be created. Edges connecting nodes are evidence of interaction, for instance, of gene products coexisting in the same cellular component. Such interaction networks are called protein-protein interactions (PPIs). After genome assembling, PPI mapping is used to predict the possibility of proteins interacting with other proteins based on literature evidence and several databases, thus enriching genome annotations. Identifying PPIs involves analyzing each possible protein pair for a set of features, for instance, participation in the same biological process and having the same function and status in a cellular component. Here, we investigated using the three categories of the Gene Ontology (GO) database for efficient PPI prediction, because it provides data about the three features exemplified here. For a broader conclusion, we investigated the genomes of ten different human pathogens, looking for commonality regarding the GO hierarchical relationship-denominated IS_A. The plasmids were examined separately from their main genomes. Protein pairs sharing at least one IS_A value were considered as interacting proteins. STRING results certified the probed interactions as sensitivity (score >0.75) and specificity (score <0.25) analysis. The average areas under the receiver operating characteristic curve for all organisms were 0.66 and 0.53 for their genomes and plasmids, respectively. Thus, GO categories alone could not potentially provide reliable PPI prediction. However, using additional features can improve predictions.

摘要

自首次组装基因组以来,仅基因序列不足以理解涉及多个基因的复杂代谢过程,每个基因都发挥着独特作用。为了确定它们的作用,应该创建一个相互作用网络,其中每个基因都是一个节点。连接节点的边是相互作用的证据,例如,基因产物共存于同一细胞组分中。这种相互作用网络称为蛋白质-蛋白质相互作用(PPI)。在基因组组装之后,PPI图谱绘制用于基于文献证据和几个数据库预测蛋白质与其他蛋白质相互作用的可能性,从而丰富基因组注释。识别PPI涉及分析一组特征中的每一个可能的蛋白质对,例如,参与相同的生物学过程以及在细胞组分中具有相同的功能和状态。在这里,我们研究使用基因本体论(GO)数据库的三类数据进行高效的PPI预测,因为它提供了此处举例说明的三种特征的数据。为了得出更广泛的结论,我们研究了十种不同人类病原体的基因组,寻找关于以GO层次关系命名的IS_A的共性。质粒与它们的主要基因组分开进行检查。共享至少一个IS_A值的蛋白质对被视为相互作用蛋白质。STRING结果通过敏感性(得分>0.75)和特异性(得分<0.25)分析验证了所探测的相互作用。所有生物体的基因组和质粒在接收者操作特征曲线下的平均面积分别为0.66和0.53。因此,仅GO类别可能无法提供可靠的PPI预测。然而,使用其他特征可以改善预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验