Suppr超能文献

解剖学本体数据与蛋白质-蛋白质相互作用网络的整合提高了解剖实体候选基因预测的准确性。

Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities.

机构信息

Department of Biology, University of South Dakota, Vermillion, SD, USA.

National Ecological Observatory Network, Battelle Memorial Institute, 1685 38th St., Suite 100, Boulder, CO, 80301, USA.

出版信息

BMC Bioinformatics. 2020 Oct 7;21(1):442. doi: 10.1186/s12859-020-03773-2.

Abstract

BACKGROUND

Identification of genes responsible for anatomical entities is a major requirement in many fields including developmental biology, medicine, and agriculture. Current wet lab techniques used for this purpose, such as gene knockout, are high in resource and time consumption. Protein-protein interaction (PPI) networks are frequently used to predict disease genes for humans and gene candidates for molecular functions, but they are rarely used to predict genes for anatomical entities. Moreover, PPI networks suffer from network quality issues, which can be a limitation for their usage in predicting candidate genes. Therefore, we developed an integrative framework to improve the candidate gene prediction accuracy for anatomical entities by combining existing experimental knowledge about gene-anatomical entity relationships with PPI networks using anatomy ontology annotations. We hypothesized that this integration improves the quality of the PPI networks by reducing the number of false positive and false negative interactions and is better optimized to predict candidate genes for anatomical entities. We used existing Uberon anatomical entity annotations for zebrafish and mouse genes to construct gene networks by calculating semantic similarity between the genes. These anatomy-based gene networks were semantic networks, as they were constructed based on the anatomy ontology annotations that were obtained from the experimental data in the literature. We integrated these anatomy-based gene networks with mouse and zebrafish PPI networks retrieved from the STRING database and compared the performance of their network-based candidate gene predictions.

RESULTS

According to evaluations of candidate gene prediction performance tested under four different semantic similarity calculation methods (Lin, Resnik, Schlicker, and Wang), the integrated networks, which were semantically improved PPI networks, showed better performances by having higher area under the curve values for receiver operating characteristic and precision-recall curves than PPI networks for both zebrafish and mouse.

CONCLUSION

Integration of existing experimental knowledge about gene-anatomical entity relationships with PPI networks via anatomy ontology improved the candidate gene prediction accuracy and optimized them for predicting candidate genes for anatomical entities.

摘要

背景

识别负责解剖实体的基因是包括发育生物学、医学和农业在内的许多领域的主要要求。目前用于此目的的湿实验室技术,如基因敲除,资源和时间消耗都很高。蛋白质-蛋白质相互作用(PPI)网络常用于预测人类疾病基因和分子功能的候选基因,但很少用于预测解剖实体的基因。此外,PPI 网络存在网络质量问题,这可能限制其在预测候选基因中的使用。因此,我们开发了一种综合框架,通过将现有的关于基因-解剖实体关系的实验知识与使用解剖本体论注释的 PPI 网络结合起来,来提高解剖实体候选基因预测的准确性。我们假设这种整合通过减少假阳性和假阴性相互作用来提高 PPI 网络的质量,并且更好地优化了预测解剖实体候选基因的功能。我们使用现有的斑马鱼和小鼠基因的 Uberon 解剖实体注释来构建基因网络,通过计算基因之间的语义相似性来构建基因网络。这些基于解剖学的基因网络是语义网络,因为它们是基于从文献中的实验数据获得的解剖本体论注释构建的。我们将这些基于解剖学的基因网络与从 STRING 数据库检索到的小鼠和斑马鱼 PPI 网络集成,并比较了它们基于网络的候选基因预测的性能。

结果

根据在四种不同语义相似性计算方法(Lin、Resnik、Schlicker 和 Wang)下测试的候选基因预测性能评估,集成网络,即语义改进的 PPI 网络,通过具有更高的接收者操作特征和精度-召回曲线下面积值,表现出更好的性能,优于 PPI 网络,无论是对于斑马鱼还是小鼠。

结论

通过解剖本体论将现有的关于基因-解剖实体关系的实验知识与 PPI 网络集成,提高了候选基因预测的准确性,并优化了它们对解剖实体候选基因的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2917/7542696/2185ba9bd096/12859_2020_3773_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验