Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.
J Am Chem Soc. 2017 Jan 18;139(2):1011-1018. doi: 10.1021/jacs.6b12080. Epub 2017 Jan 6.
Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα(1,4)-GlcNAc and Manβ(1,4)-GlcNAc appendages. Mammalian glycosyltransferases recognize only the terminal LacNAc moiety as a substrate, and thus this structure can be uniquely extended. Next, the β-GlcNAc terminating antenna can be converted into LacNAc by galactosylation and can then be enzymatically modified into a complex structure. The unnatural α-Gal and β-Man terminating antennae can sequentially be decaged by an appropriate glycosidase to liberate a terminal β-GlcNAc moiety, which can be converted into LacNAc and then elaborated by a panel of glycosyltransferases. Asymmetric bi- and triantennary glycans could be obtained by removal of a terminal β-GlcNAc moiety by treatment with β-N-acetylglucosaminidase and selective extension of the other arms. The power of the methodology is demonstrated by the preparation of an asymmetric tetra-antennary N-glycan found in human breast carcinoma tissue, which represents the most complex N-glycan ever synthesized. Multistage mass spectrometry of the two isomeric triantennary glycans uncovered unique fragment ions that will facilitate identification of exact structures of glycans in biological samples.
糖科学的进展受到缺乏定义明确的复杂寡糖标准的阻碍,这些标准是制造下一代微阵列、开发用于确定分离糖链确切结构的分析方案以及阐明糖生物合成途径所必需的。我们在这里描述了一种化学酶法方法,该方法首次使得能够从单个前体制备任何双、三、四天线不对称 N-聚糖。它基于化学合成一种具有 N-乙酰葡萄糖胺 (GlcNAc)、N-乙酰乳糖胺 (LacNAc) 和非天然 Galα(1,4)-GlcNAc 和 Manβ(1,4)-GlcNAc 侧链的四天线聚糖。哺乳动物糖基转移酶仅将末端 LacNAc 部分识别为底物,因此该结构可以独特地扩展。接下来,β-GlcNAc 末端天线可以通过半乳糖基化转化为 LacNAc,然后可以通过酶修饰成复杂结构。非天然的α-Gal 和β-Man 末端天线可以通过适当的糖苷酶依次去壳,释放末端β-GlcNAc 部分,该部分可以转化为 LacNAc,然后通过一组糖基转移酶进行修饰。通过用β-N-乙酰葡萄糖苷酶处理去除末端β-GlcNAc 部分并选择性扩展其他臂,可以获得不对称的双和三天线聚糖。该方法的强大功能通过制备人乳腺癌组织中发现的不对称四天线 N-聚糖来证明,这是迄今为止合成的最复杂的 N-聚糖。两种异构三天线聚糖的多级质谱揭示了独特的片段离子,这将有助于鉴定生物样品中糖链的确切结构。