Suppr超能文献

用于碳水化合物化学酶法合成的一锅多酶(OPME)系统。

One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.

作者信息

Yu Hai, Chen Xi

机构信息

Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Org Biomol Chem. 2016 Mar 14;14(10):2809-18. doi: 10.1039/c6ob00058d.

Abstract

Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.

摘要

糖基转移酶催化的酶促和化学酶促合成是生产寡糖、多糖、糖缀合物及其衍生物的有力方法。参与糖核苷酸供体生物合成的酶可与糖基转移酶在同一反应体系中结合,从而从简单的单糖和受体高效生产目标聚糖。参与糖核苷酸生成补救途径的酶的鉴定极大地促进了用于合成哺乳动物糖组中主要聚糖表位的简化高效一锅多酶(OPME)系统的开发。OPME方法的应用正日益普及,这主要归功于野生型和工程酶的可得性不断提高。这些酶及其突变体的底物选择性使得OPME能够以修饰的单糖为前体,合成具有天然糖基化后修饰(PGM)及其非天然衍生物的碳水化合物。OPME系统可依次应用于合成复杂碳水化合物。连续OPME过程的顺序、所使用的糖基转移酶以及糖基转移酶的底物特异性决定了产物的结构。当有合适的具有底物选择性的酶可用时,OPME和连续OPME策略可扩展到其他糖组中的多种聚糖。本综述总结了作者及其合作者在基于糖基转移酶的OPME碳水化合物合成系统开发方面的工作。还讨论了未来的发展方向。

相似文献

1
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.
Org Biomol Chem. 2016 Mar 14;14(10):2809-18. doi: 10.1039/c6ob00058d.
2
Strategies for chemoenzymatic synthesis of carbohydrates.
Carbohydr Res. 2019 Jan 15;472:86-97. doi: 10.1016/j.carres.2018.11.014. Epub 2018 Nov 24.
3
Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates.
Acc Chem Res. 2024 Jan 16;57(2):234-246. doi: 10.1021/acs.accounts.3c00614. Epub 2023 Dec 21.
4
Regioselective One-Pot Multienzyme (OPME) Chemoenzymatic Strategies for Systematic Synthesis of Sialyl Core 2 Glycans.
ACS Catal. 2019 Jan 4;9(1):211-215. doi: 10.1021/acscatal.8b04231. Epub 2018 Dec 5.
6
Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases.
Curr Opin Chem Biol. 2021 Apr;61:81-95. doi: 10.1016/j.cbpa.2020.10.007. Epub 2020 Dec 10.
7
Carbohydrate post-glycosylational modifications.
Org Biomol Chem. 2007 Mar 21;5(6):865-72. doi: 10.1039/b700034k. Epub 2007 Feb 6.
9
Promiscuity and specificity of eukaryotic glycosyltransferases.
Biochem Soc Trans. 2020 Jun 30;48(3):891-900. doi: 10.1042/BST20190651.
10
Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification.
Chem Commun (Camb). 2014 Mar 25;50(24):3159-62. doi: 10.1039/c4cc00070f. Epub 2014 Jan 29.

引用本文的文献

2
Sugar Auxiliary Group Assisted Diversity-Oriented Enzymatic Modular Synthesis of 0-Series Ganglioside Glycans.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202418929. doi: 10.1002/anie.202418929. Epub 2025 Jan 7.
4
Molecular mechanism of decision-making in glycosaminoglycan biosynthesis.
Nat Commun. 2023 Oct 13;14(1):6425. doi: 10.1038/s41467-023-42236-z.
6
A Hitchhiker's Guide to Problem Selection in Carbohydrate Synthesis.
ACS Cent Sci. 2023 Jul 12;9(7):1285-1296. doi: 10.1021/acscentsci.3c00507. eCollection 2023 Jul 26.
7
Digital microfluidics-engaged automated enzymatic degradation and synthesis of oligosaccharides.
Front Bioeng Biotechnol. 2023 Jun 21;11:1201300. doi: 10.3389/fbioe.2023.1201300. eCollection 2023.
8
Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in .
Molecules. 2023 Mar 18;28(6):2753. doi: 10.3390/molecules28062753.
9
Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis.
JACS Au. 2022 Dec 7;3(1):47-61. doi: 10.1021/jacsau.2c00529. eCollection 2023 Jan 23.
10
Tools for mammalian glycoscience research.
Cell. 2022 Jul 21;185(15):2657-2677. doi: 10.1016/j.cell.2022.06.016. Epub 2022 Jul 8.

本文引用的文献

1
Systematic Chemoenzymatic Synthesis of -Sulfated Sialyl Lewis x Antigens.
Chem Sci. 2016 Apr 1;7(4):2827-2831. doi: 10.1039/C5SC04104J. Epub 2015 Dec 17.
2
Glycosyltransferase engineering for carbohydrate synthesis.
Biochem Soc Trans. 2016 Feb;44(1):129-42. doi: 10.1042/BST20150200.
3
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling.
Glycoconj J. 2016 Feb;33(1):1-17. doi: 10.1007/s10719-015-9642-2. Epub 2015 Dec 3.
4
RNA epigenetics--chemical messages for posttranscriptional gene regulation.
Curr Opin Chem Biol. 2016 Feb;30:46-51. doi: 10.1016/j.cbpa.2015.10.024. Epub 2015 Nov 26.
5
Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis.
Adv Carbohydr Chem Biochem. 2015;72:113-90. doi: 10.1016/bs.accb.2015.08.002. Epub 2015 Nov 11.
6
Sialic acids in biological and therapeutic processes: opportunities and challenges.
Future Med Chem. 2015;7(16):2285-99. doi: 10.4155/fmc.15.135. Epub 2015 Oct 29.
7
Enzymatic Redox Cascade for One-Pot Synthesis of Uridine 5'-Diphosphate Xylose from Uridine 5'-Diphosphate Glucose.
Adv Synth Catal. 2014 Nov 24;356(17):3575-3584. doi: 10.1002/adsc.201400766. Epub 2014 Nov 5.
8
Chemoenzymatic synthesis of α-dystroglycan core M1 O-mannose glycans.
Chem Commun (Camb). 2015 Jul 25;51(58):11654-7. doi: 10.1039/c5cc02913a. Epub 2015 Jun 23.
9
Efficient chemoenzymatic synthesis of novel galacto-N-biose derivatives and their sialylated forms.
Chem Commun (Camb). 2015 Jun 28;51(51):10310-3. doi: 10.1039/c5cc03746h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验