Suppr超能文献

昆虫复眼的六边形图案形成:小眼面面积变化、缺陷及紊乱

Hexagonal Patterning of the Insect Compound Eye: Facet Area Variation, Defects, and Disorder.

作者信息

Kim Sangwoo, Cassidy Justin J, Yang Boyuan, Carthew Richard W, Hilgenfeldt Sascha

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Department of Molecular Biosciences, Northwestern University, Evanston, Illinois.

出版信息

Biophys J. 2016 Dec 20;111(12):2735-2746. doi: 10.1016/j.bpj.2016.11.004.

Abstract

The regular hexagonal array morphology of facets (ommatidia) in the Drosophila compound eye is accomplished by regulation of cell differentiation and planar cell polarity during development. Mutations in certain genes disrupt regulation, causing a breakdown of this perfect symmetry, so that the ommatidial pattern shows onset of disorder in the form of packing defects. We analyze a variety of such mutants and compare them to normal (wild-type), finding that mutants show increased local variation in ommatidial area, which is sufficient to induce a significant number of defects. A model formalism based on Voronoi construction is developed to predict the observed correlation between ommatidium size variation and the number of defects, and to study the onset of disorder in this system with statistical tools. The model uncovers a previously unknown large-scale systematic size variation of the ommatidia across the eye of both wild-type and mutant animals. Such systematic variation of area, as well as its statistical fluctuations, are found to have distinct effects on eye disorder that can both be quantitatively modeled. Furthermore, the topological order is also influenced by the internal structure of the ommatidia, with cells of greater relative mechanical stiffness providing constraints to ommatidial deformation and thus to defect generation. Without free parameters, the simulation predicts the size-topology correlation for both wild-type and mutant eyes. This work develops formalisms of size-topology correlation that are very general and can be potentially applied to other cellular structures near the onset of disorder.

摘要

果蝇复眼中小眼面(小眼)的规则六边形阵列形态是在发育过程中通过细胞分化和平面细胞极性的调节来实现的。某些基因的突变会破坏这种调节,导致这种完美对称性的破坏,从而使小眼模式以堆积缺陷的形式出现无序状态。我们分析了多种此类突变体,并将它们与正常(野生型)进行比较,发现突变体的小眼面积局部变化增加,这足以导致大量缺陷。我们开发了一种基于沃罗诺伊构造的模型形式,以预测观察到的确小眼尺寸变化与缺陷数量之间的相关性,并用统计工具研究该系统中无序状态的起始。该模型揭示了野生型和突变型动物整个眼睛中小眼的一种以前未知的大规模系统性尺寸变化。发现这种面积的系统性变化及其统计波动对眼睛无序状态有不同的影响,两者都可以进行定量建模。此外,拓扑顺序也受小眼内部结构的影响,相对机械刚度较大的细胞会对小眼变形从而对缺陷产生提供限制。无需自由参数,该模拟就能预测野生型和突变型眼睛的尺寸 - 拓扑相关性。这项工作开发了尺寸 - 拓扑相关性的形式,这些形式非常通用,可能适用于接近无序起始状态的其他细胞结构。

相似文献

1
Hexagonal Patterning of the Insect Compound Eye: Facet Area Variation, Defects, and Disorder.
Biophys J. 2016 Dec 20;111(12):2735-2746. doi: 10.1016/j.bpj.2016.11.004.
2
Tiling mechanisms of the Drosophila compound eye through geometrical tessellation.
Curr Biol. 2022 May 9;32(9):2101-2109.e5. doi: 10.1016/j.cub.2022.03.046. Epub 2022 Apr 6.
3
A two-step patterning process increases the robustness of periodic patterning in the fly eye.
J Biol Phys. 2016 Jun;42(3):317-38. doi: 10.1007/s10867-016-9409-4. Epub 2016 Feb 16.
6
Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup.
PLoS One. 2012;7(5):e37346. doi: 10.1371/journal.pone.0037346. Epub 2012 May 25.
7
Shaping an optical dome: The size and shape of the insect compound eye.
Semin Cell Dev Biol. 2022 Oct;130:37-44. doi: 10.1016/j.semcdb.2021.11.002. Epub 2021 Nov 20.
9
Building an ommatidium one cell at a time.
Dev Dyn. 2012 Jan;241(1):136-49. doi: 10.1002/dvdy.23707.

引用本文的文献

1
Interfacial energy constraints are sufficient to align cells over large distances.
Biophys J. 2025 Mar 18;124(6):1011-1023. doi: 10.1016/j.bpj.2025.02.011. Epub 2025 Mar 12.
3
A nuclear jamming transition in vertebrate organogenesis.
Nat Mater. 2024 Nov;23(11):1592-1599. doi: 10.1038/s41563-024-01972-3. Epub 2024 Aug 12.
4
EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification.
Front Cell Dev Biol. 2022 Aug 26;10:964746. doi: 10.3389/fcell.2022.964746. eCollection 2022.
5
Defect patterns on the curved surface of fish retinae suggest a mechanism of cone mosaic formation.
PLoS Comput Biol. 2020 Dec 15;16(12):e1008437. doi: 10.1371/journal.pcbi.1008437. eCollection 2020 Dec.
6
Characterization of the Genetic Architecture Underlying Eye Size Variation Within and .
G3 (Bethesda). 2020 Mar 5;10(3):1005-1018. doi: 10.1534/g3.119.400877.
7
Threshold response to stochasticity in morphogenesis.
PLoS One. 2019 Jan 30;14(1):e0210088. doi: 10.1371/journal.pone.0210088. eCollection 2019.
8
Geometric constraints alter cell arrangements within curved epithelial tissues.
Mol Biol Cell. 2017 Dec 1;28(25):3582-3594. doi: 10.1091/mbc.E17-01-0060. Epub 2017 Oct 4.

本文引用的文献

1
Cell shapes and patterns as quantitative indicators of tissue stress in the plant epidermis.
Soft Matter. 2015 Oct 7;11(37):7270-5. doi: 10.1039/c5sm01563d. Epub 2015 Aug 12.
2
Lewis' law revisited: the role of anisotropy in size-topology correlations.
New J Phys. 2014 Jan;16(January). doi: 10.1088/1367-2630/16/1/015024.
3
Existence of isostatic, maximally random jammed monodisperse hard-disk packings.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18436-41. doi: 10.1073/pnas.1408371112. Epub 2014 Dec 15.
4
Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022721. doi: 10.1103/PhysRevE.89.022721. Epub 2014 Feb 24.
5
Analytical results for size-topology correlations in 2D disk and cellular packings.
Phys Rev Lett. 2012 Jan 6;108(1):015502. doi: 10.1103/PhysRevLett.108.015502. Epub 2012 Jan 5.
6
Statistical mechanics of two-dimensional shuffled foams: prediction of the correlation between geometry and topology.
Phys Rev Lett. 2011 Oct 14;107(16):168304. doi: 10.1103/PhysRevLett.107.168304.
7
Cadherin-dependent cell morphology in an epithelium: constructing a quantitative dynamical model.
PLoS Comput Biol. 2011 Jul;7(7):e1002115. doi: 10.1371/journal.pcbi.1002115. Epub 2011 Jul 21.
8
Mechanics and remodelling of cell packings in epithelia.
Eur Phys J E Soft Matter. 2010 Oct;33(2):117-27. doi: 10.1140/epje/i2010-10677-0. Epub 2010 Nov 17.
9
Coaction of intercellular adhesion and cortical tension specifies tissue surface tension.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12517-22. doi: 10.1073/pnas.1003743107. Epub 2010 Jun 28.
10
Physical modeling of cell geometric order in an epithelial tissue.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):907-11. doi: 10.1073/pnas.0711077105. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验