Kim Sangwoo, Hilgenfeldt Sascha
Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Illinois, USA.
Soft Matter. 2015 Oct 7;11(37):7270-5. doi: 10.1039/c5sm01563d. Epub 2015 Aug 12.
In a confluent, single-cell tissue layer, we show that cell shapes and statistics correlate directly with the tissue's mechanical properties, described by an energy functional with generic interfacial terms only. Upon increasing the cohesive component of the model, we observe a clear transition from a tense state with isotropic cells to a relaxed state with anisotropic cells. Signatures of the transition are present in the interfacial mechanics, the domain geometry, and the domain statistics, thus linking all three fields of study. This transition persists for all cell size distributions, but its exact position is crucially dependent on fluctuations in the parameter values of the functional (quenched disorder). The magnitude of fluctuations can be matched to the observed shape distribution of cells, so that visual observation of cell shapes and statistics provides information about the mechanical state of the tissue. Comparing with experimental data from the Cucumis epidermis, we find that the system is located right at the transition, allowing the tissue to relieve most of the local stress while maintaining integrity.
在一个汇合的单细胞组织层中,我们表明细胞形状和统计数据与组织的力学性能直接相关,该力学性能由仅具有一般界面项的能量泛函描述。随着模型内聚成分的增加,我们观察到从具有各向同性细胞的紧张状态到具有各向异性细胞的松弛状态的明显转变。转变的特征存在于界面力学、域几何形状和域统计中,从而将所有这三个研究领域联系起来。这种转变对于所有细胞大小分布都持续存在,但其确切位置关键取决于泛函参数值的波动(淬火无序)。波动幅度可以与观察到的细胞形状分布相匹配,因此通过视觉观察细胞形状和统计数据可以提供有关组织力学状态的信息。与来自黄瓜表皮的实验数据相比,我们发现该系统恰好处于转变点,使得组织能够在保持完整性的同时缓解大部分局部应力。