Smyrnova Daryna, Zinovjev Kirill, Tuñón Iñaki, Ceulemans Arnout
Quantum Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium.
Departament de Química Física, Universitat de València , 46100 Burjassot, Spain.
J Phys Chem B. 2016 Dec 22;120(50):12820-12825. doi: 10.1021/acs.jpcb.6b10859. Epub 2016 Dec 8.
The photoswitching speed of the reversibly switchable fluorescent proteins (RSFPs) from the family of green fluorescent proteins (GFPs) changes upon mutation which is of direct importance for various high-resolution techniques. Dronpa is one of the most used RSFPs. Its point mutants rsFastLime (Dronpa V157G) and rsKame (Dronpa V157L) exhibit a striking difference in their photoswitching speed. Here the QM/MM on-the-fly string method is used in order to explore the details of the thermal isomerization mechanism. The four principal ways in which isomerization may occur have been scrutinized for each of the three proteins. It has been shown that thermal isomerization occurs via a one-bond-flip mechanism in all three proteins, although, in rsKame, where the chromophore is constrained more, the activation free energy difference between hula-twist and one-bond-flip is significantly smaller. Functional mode analysis has been applied to examine the motions of the amino acids during the isomerization. It clearly identifies the importance of Val/Leu 157 as well as the amino acids in the α-helix during the isomerization.
来自绿色荧光蛋白(GFP)家族的可逆光开关荧光蛋白(RSFP)的光开关速度会因突变而改变,这对各种高分辨率技术具有直接重要性。Dronpa是最常用的RSFP之一。其点突变体rsFastLime(Dronpa V157G)和rsKame(Dronpa V157L)在光开关速度上表现出显著差异。在此,采用量子力学/分子力学实时弦方法来探究热异构化机制的细节。针对这三种蛋白质中的每一种,都仔细研究了异构化可能发生的四种主要方式。结果表明,尽管在发色团受约束更大的rsKame中,呼啦圈扭转和单键翻转之间的活化自由能差明显较小,但在所有这三种蛋白质中,热异构化都是通过单键翻转机制发生的。功能模式分析已被用于检查异构化过程中氨基酸的运动。它清楚地确定了缬氨酸/亮氨酸157以及α-螺旋中的氨基酸在异构化过程中的重要性。