Suppr超能文献

可逆荧光蛋白的系统激发态研究。

Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins.

机构信息

Quantum Chemistry and Physical Chemistry Division, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Heverlee , Belgium.

Department of Biotechnology, Chemistry, and Pharmacy , Universitá di Siena , via A. Moro 2 , I-53100 Siena , Italy.

出版信息

J Chem Theory Comput. 2018 Jun 12;14(6):3163-3172. doi: 10.1021/acs.jctc.8b00050. Epub 2018 May 29.

Abstract

The reversibly switchable fluorescent proteins Dronpa, rsFastLime, rsKame, Padron, and bsDronpa feature the same chromophore but display a 40 nm variation in absorption maxima and an only 18 nm variation in emission maxima. In the present contribution, we employ QM/MM models to investigate the mechanism of such remarkably different spectral variations, which are caused by just a few amino acid replacements. We show that the models, which are based on CASPT2//CASSCF level of QM theory, reproduce the observed trends in absorption maxima, with only a 3.5 kcal/mol blue-shift, and in emission maxima, with an even smaller 1.5 kcal/mol blue-shift with respect to the observed quantities. In order to explain the variations across the series, we look at the chromophore's electronic structure change during absorption and emission. Such analysis indicates that a change in charge-transfer character, which is more pronounced during absorption, triggers a cascade of hydrogen-bond-network rearrangements, suggesting preparation to an isomerization event. We also show how the contribution of Arg 89 and Arg 64 residues to the chromophore conformational changes correlate with the spectral variations in absorption and emission. Furthermore, we describe how the conical intersection stability is related to the protein's photophysical properties. While for the Dronpa, rsFastLime, and rsKame triad, the stability correlates with the photoswitching speed, this does not happen for bsDronpa and Padron, suggesting a less obvious photoisomerization mechanism.

摘要

可逆转荧光蛋白 Dronpa、rsFastLime、rsKame、Padron 和 bsDronpa 的发色团相同,但吸收峰最大值相差 40nm,发射峰最大值相差仅 18nm。在本研究中,我们采用 QM/MM 模型来研究这种光谱差异如此显著的机制,这种差异仅由少数氨基酸取代引起。结果表明,基于 CASPT2//CASSCF 量子理论水平的模型能够重现吸收峰最大值的观察趋势,仅产生 3.5kcal/mol 的蓝移,发射峰最大值也产生 1.5kcal/mol 的蓝移,与观察到的数量相当。为了解释该系列的变化,我们研究了发色团在吸收和发射过程中电子结构的变化。这种分析表明,电荷转移特性的变化在吸收过程中更为明显,引发了氢键网络的级联重排,这表明准备发生异构化事件。我们还展示了 Arg89 和 Arg64 残基对发色团构象变化的贡献如何与吸收和发射光谱的变化相关。此外,我们描述了锥交叉稳定性与蛋白质光物理性质的关系。对于 Dronpa、rsFastLime 和 rsKame 三联体,稳定性与光开关速度相关,但对于 bsDronpa 和 Padron 则不然,这表明其光异构化机制不太明显。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验