Garten Matthias, Mosgaard Lars D, Bornschlögl Thomas, Dieudonné Stéphane, Bassereau Patricia, Toombes Gilman E S
Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.
Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 6, F-75005, Paris, France.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):328-333. doi: 10.1073/pnas.1609142114. Epub 2016 Dec 21.
Studying how the membrane modulates ion channel and transporter activity is challenging because cells actively regulate membrane properties, whereas existing in vitro systems have limitations, such as residual solvent and unphysiologically high membrane tension. Cell-sized giant unilamellar vesicles (GUVs) would be ideal for in vitro electrophysiology, but efforts to measure the membrane current of intact GUVs have been unsuccessful. In this work, two challenges for obtaining the "whole-GUV" patch-clamp configuration were identified and resolved. First, unless the patch pipette and GUV pressures are precisely matched in the GUV-attached configuration, breaking the patch membrane also ruptures the GUV. Second, GUVs shrink irreversibly because the membrane/glass adhesion creating the high-resistance seal (>1 GΩ) continuously pulls membrane into the pipette. In contrast, for cell-derived giant plasma membrane vesicles (GPMVs), breaking the patch membrane allows the GPMV contents to passivate the pipette surface, thereby dynamically blocking membrane spreading in the whole-GMPV mode. To mimic this dynamic passivation mechanism, beta-casein was encapsulated into GUVs, yielding a stable, high-resistance, whole-GUV configuration for a range of membrane compositions. Specific membrane capacitance measurements confirmed that the membranes were truly solvent-free and that membrane tension could be controlled over a physiological range. Finally, the potential for ion transport studies was tested using the model ion channel, gramicidin, and voltage-clamp fluorometry measurements were performed with a voltage-dependent fluorophore/quencher pair. Whole-GUV patch-clamping allows ion transport and other voltage-dependent processes to be studied while controlling membrane composition, tension, and shape.
研究细胞膜如何调节离子通道和转运蛋白的活性具有挑战性,因为细胞会主动调节膜的特性,而现有的体外系统存在局限性,例如残留溶剂和非生理性的高膜张力。细胞大小的巨型单层囊泡(GUV)对于体外电生理学来说是理想的,但测量完整GUV膜电流的努力一直没有成功。在这项工作中,确定并解决了获得“全GUV”膜片钳配置的两个挑战。首先,在GUV附着配置中,除非膜片吸管和GUV的压力精确匹配,否则打破膜片也会使GUV破裂。其次,GUV会不可逆地收缩,因为形成高电阻封接(>1 GΩ)的膜/玻璃粘附力会持续将膜拉入微管。相比之下,对于细胞衍生的巨型质膜囊泡(GPMV),打破膜片会使GPMV内容物使吸管表面钝化,从而在全GMPV模式下动态阻止膜的铺展。为了模拟这种动态钝化机制,将β-酪蛋白包裹在GUV中,对于一系列膜组成产生了稳定的、高电阻的全GUV配置。特定膜电容测量证实,这些膜确实无溶剂,并且膜张力可以在生理范围内控制。最后,使用模型离子通道短杆菌肽测试了离子转运研究的潜力,并使用电压依赖性荧光团/猝灭剂对进行了电压钳荧光测量。全GUV膜片钳技术允许在控制膜组成、张力和形状的同时研究离子转运和其他电压依赖性过程。