Yuan Ting, Rafizadeh Sahar, Gorrepati Kanaka Durga Devi, Lupse Blaz, Oberholzer Jose, Maedler Kathrin, Ardestani Amin
Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, 28359, Bremen, Germany.
Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA.
Diabetologia. 2017 Apr;60(4):668-678. doi: 10.1007/s00125-016-4188-9. Epub 2016 Dec 21.
AIMS/HYPOTHESIS: Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of nutritional status at the cellular and organismic level. While mTORC1 mediates beta cell growth and expansion, its hyperactivation has been observed in pancreatic islets from animal models of type 2 diabetes and leads to beta cell loss. We sought to determine whether such mTORC1 activation occurs in humans with type 2 diabetes or in metabolically stressed human islets and whether mTORC1 blockade can restore beta cell function of diabetic islets.
Human islets isolated from non-diabetic controls and individuals with type 2 diabetes, as well as human islets and INS-1E cells exposed to increased glucose (22.2 mmol/l), were examined for mTORC1/2 activity by western blotting analysis of phosphorylation of mTORC1 downstream targets ribosomal protein S6 kinase 1 (S6K1), S6 and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and mTORC2 downstream targets Akt and N-myc downstream regulated 1 (NDRG1). mTORC1/2 complexes' integrity was assessed by immunoprecipitation and subsequent western blot analysis. Cell-type specific expression of activated mTORC1 in human islets was examined by immunostaining of pS6 (Ser 235/236) in human islet sections. Beta cell function was measured by glucose-stimulated insulin secretion (GSIS).
While mTORC2 signalling was diminished, mTORC1 activity was markedly increased in islets from patients with type 2 diabetes and in islets and beta cells exposed to increased glucose concentrations. Under high-glucose conditions in metabolically stressed human islets, we identified a reciprocal regulation of different mTOR complexes, with functional upregulation of mTORC1 and downregulation of mTORC2. pS6 immunostaining showed beta cell-specific upregulation of mTORC1 in islets isolated from patients with type 2 diabetes. Inhibition of mTORC1-S6K1 signalling improved GSIS and restored mTORC2 activity in islets from patients with type 2 diabetes as well as in islets isolated from diabetic db/db mice and mice fed a high-fat/high-sucrose diet.
CONCLUSIONS/INTERPRETATION: Our data show the aberrant mTORC1 activity in islets from patients with type 2 diabetes, in human islets cultured under diabetes-associated increased glucose conditions and in diabetic mouse islets. This suggests that elevated mTORC1 activation is a striking pathogenic hallmark of islets in type 2 diabetes, contributing to impaired beta cell function and survival in the presence of metabolic stress.
目的/假设:雷帕霉素复合物1(mTORC1)的机制性靶点是细胞和机体水平营养状态的主要调节因子。虽然mTORC1介导β细胞的生长和增殖,但在2型糖尿病动物模型的胰岛中已观察到其过度激活,并导致β细胞丢失。我们试图确定这种mTORC1激活是否发生在2型糖尿病患者或代谢应激的人胰岛中,以及mTORC1阻断是否能恢复糖尿病胰岛的β细胞功能。
通过对mTORC1下游靶点核糖体蛋白S6激酶1(S6K1)、S6以及真核翻译起始因子4E结合蛋白1(4E-BP1)的磷酸化进行蛋白质免疫印迹分析,检测从非糖尿病对照个体和2型糖尿病患者分离的人胰岛,以及暴露于高葡萄糖(22.2 mmol/L)的人胰岛和INS-1E细胞中的mTORC1/2活性;通过蛋白质免疫沉淀和随后的蛋白质免疫印迹分析评估mTORC1/2复合物的完整性。通过对人胰岛切片中pS6(Ser 235/236)进行免疫染色,检测激活的mTORCⅠ在人胰岛中的细胞类型特异性表达。通过葡萄糖刺激的胰岛素分泌(GSIS)测量β细胞功能。
虽然mTORC2信号减弱,但2型糖尿病患者的胰岛以及暴露于高葡萄糖浓度的胰岛和β细胞中,mTORC1活性显著增加。在代谢应激的人胰岛的高葡萄糖条件下,我们发现不同mTOR复合物之间存在相互调节,mTORC1功能上调而mTORC2下调。pS6免疫染色显示,从2型糖尿病患者分离的胰岛中mTORC1的β细胞特异性上调。抑制mTORC1-S6K1信号通路可改善2型糖尿病患者胰岛以及从糖尿病db/db小鼠和高脂/高糖饮食喂养的小鼠分离出的胰岛中的GSIS,并恢复mTORC2活性。
结论/解读:我们的数据显示,2型糖尿病患者的胰岛、在糖尿病相关的高葡萄糖条件下培养的人胰岛以及糖尿病小鼠胰岛中存在异常的mTORC1活性。这表明mTORC1激活升高是2型糖尿病胰岛的一个显著致病标志,在存在代谢应激的情况下导致β细胞功能受损和存活能力下降。