Department of Chemical and Biological Engineering, Sookmyung Women's University , Seoul 04310, Korea.
King Abdulaziz City for Science and Technology , Post Office Box 6086, Riyadh 11442, Saudi Arabia.
J Am Chem Soc. 2017 Jan 11;139(1):356-362. doi: 10.1021/jacs.6b11027. Epub 2016 Dec 22.
Materials development for artificial photosynthesis, in particular, CO reduction, has been under extensive efforts, ranging from inorganic semiconductors to molecular complexes. In this report, we demonstrate a metal-organic framework (MOF)-coated nanoparticle photocatalyst with enhanced CO reduction activity and stability, which stems from having two different functional units for activity enhancement and catalytic stability combined together as a single construct. Covalently attaching a CO-to-CO conversion photocatalyst Re(CO)(BPYDC)Cl, BPYDC = 2,2'-bipyridine-5,5'-dicarboxylate, to a zirconium MOF, UiO-67 (Re-MOF), prevents dimerization leading to deactivation. By systematically controlling its density in the framework (n = 0, 1, 2, 3, 5, 11, 16, and 24 complexes per unit cell), the highest photocatalytic activity was found for Re-MOF. Structural analysis of Re-MOFs suggests that a fine balance of proximity between photoactive centers is needed for cooperatively enhanced photocatalytic activity, where an optimum number of Re complexes per unit cell should reach the highest activity. Based on the structure-activity correlation of Re-MOFs, Re-MOF was coated onto Ag nanocubes (Ag⊂Re-MOF), which spatially confined photoactive Re centers to the intensified near-surface electric fields at the surface of Ag nanocubes, resulting in a 7-fold enhancement of CO-to-CO conversion under visible light with long-term stability maintained up to 48 h.
用于人工光合作用的材料开发,特别是 CO 还原,已经得到了广泛的研究,从无机半导体到分子配合物都有涉及。在本报告中,我们展示了一种具有增强的 CO 还原活性和稳定性的金属有机骨架(MOF)包覆的纳米粒子光催化剂,其源于将两个不同的功能单元结合在一起作为单个结构,以提高活性和催化稳定性。通过将 CO 到 CO 转化光催化剂 Re(CO)(BPYDC)Cl(BPYDC = 2,2'-联吡啶-5,5'-二羧酸)共价连接到锆 MOF UiO-67(Re-MOF)上,可以防止导致失活的二聚化。通过系统地控制其在骨架中的密度(n = 0、1、2、3、5、11、16 和 24 个配合物/单位晶胞),发现 Re-MOF 的光催化活性最高。Re-MOF 的结构分析表明,需要在光活性中心之间保持精细的接近平衡,以协同增强光催化活性,其中单位晶胞中 Re 配合物的最佳数量应该达到最高活性。基于 Re-MOF 的结构-活性相关性,将 Re-MOF 包覆在 Ag 纳米立方体上(Ag⊂Re-MOF),将光活性 Re 中心限制在 Ag 纳米立方体表面的强化近表面电场中,从而在可见光下将 CO 到 CO 的转化提高了 7 倍,并且长期稳定性保持长达 48 小时。