Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
Energy Biosciences Institute, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2009501118.
Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins. We identified an uncharacterized pathway-specific transcription factor, , that is required for utilization of the nonpreferred nitrogen sources proline, branched-chain amino acids, and aromatic amino acids. AMN-1 also plays a role in regulating genes involved in responding to the simple sugar mannose, suggesting an integration of nitrogen and carbon metabolism. The utilization of nonpreferred nitrogen sources, which require metabolic processing before being used as a nitrogen source, is also regulated by the nitrogen catabolite regulator NIT-2. Using RNA sequencing combined with DNA affinity purification sequencing, we performed a survey of the role of NIT-2 and the pathway-specific transcription factors NIT-4 and AMN-1 in directly regulating genes involved in nitrogen utilization. Although previous studies suggested promoter binding by both a pathway-specific transcription factor and NIT-2 may be necessary for activation of nitrogen-responsive genes, our data show that pathway-specific transcription factors regulate genes involved in the catabolism of specific nitrogen sources, while NIT-2 regulates genes involved in utilization of all nonpreferred nitrogen sources, such as nitrogen transporters. Together, these transcription factors form a nutrient sensing network that allows cells to regulate nitrogen utilization.
感知可用营养物质并有效地加以利用是所有生物共同面临的挑战。模式丝状真菌能够利用各种无机和有机氮源。 的氮利用受特定途径转录因子网络调控,这些转录因子激活利用特定氮源所需的基因,同时结合氮分解代谢阻遏调控蛋白。我们鉴定出一种未表征的途径特异性转录因子 AMN-1,该因子对于利用非首选氮源脯氨酸、支链氨基酸和芳香族氨基酸是必需的。AMN-1 还在调节参与响应简单糖甘露糖的基因方面发挥作用,表明氮和碳代谢的整合。非首选氮源的利用需要在用作氮源之前进行代谢处理,也受到氮分解代谢调节剂 NIT-2 的调控。使用 RNA 测序结合 DNA 亲和力纯化测序,我们对 NIT-2 和途径特异性转录因子 NIT-4 和 AMN-1 在直接调控参与氮利用的基因中的作用进行了调查。尽管先前的研究表明,氮响应基因的激活可能需要途径特异性转录因子和 NIT-2 的启动子结合,但我们的数据表明,途径特异性转录因子调节参与特定氮源分解代谢的基因,而 NIT-2 调节参与利用所有非首选氮源的基因,如氮转运蛋白。这些转录因子共同构成了一个营养感应网络,使 细胞能够调节氮的利用。