Suppr超能文献

DNA 亲和纯化测序和转录谱分析揭示丝状真菌中氮调控的新方面。

DNA affinity purification sequencing and transcriptional profiling reveal new aspects of nitrogen regulation in a filamentous fungus.

机构信息

Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;

Energy Biosciences Institute, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2009501118.

Abstract

Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins. We identified an uncharacterized pathway-specific transcription factor, , that is required for utilization of the nonpreferred nitrogen sources proline, branched-chain amino acids, and aromatic amino acids. AMN-1 also plays a role in regulating genes involved in responding to the simple sugar mannose, suggesting an integration of nitrogen and carbon metabolism. The utilization of nonpreferred nitrogen sources, which require metabolic processing before being used as a nitrogen source, is also regulated by the nitrogen catabolite regulator NIT-2. Using RNA sequencing combined with DNA affinity purification sequencing, we performed a survey of the role of NIT-2 and the pathway-specific transcription factors NIT-4 and AMN-1 in directly regulating genes involved in nitrogen utilization. Although previous studies suggested promoter binding by both a pathway-specific transcription factor and NIT-2 may be necessary for activation of nitrogen-responsive genes, our data show that pathway-specific transcription factors regulate genes involved in the catabolism of specific nitrogen sources, while NIT-2 regulates genes involved in utilization of all nonpreferred nitrogen sources, such as nitrogen transporters. Together, these transcription factors form a nutrient sensing network that allows cells to regulate nitrogen utilization.

摘要

感知可用营养物质并有效地加以利用是所有生物共同面临的挑战。模式丝状真菌能够利用各种无机和有机氮源。 的氮利用受特定途径转录因子网络调控,这些转录因子激活利用特定氮源所需的基因,同时结合氮分解代谢阻遏调控蛋白。我们鉴定出一种未表征的途径特异性转录因子 AMN-1,该因子对于利用非首选氮源脯氨酸、支链氨基酸和芳香族氨基酸是必需的。AMN-1 还在调节参与响应简单糖甘露糖的基因方面发挥作用,表明氮和碳代谢的整合。非首选氮源的利用需要在用作氮源之前进行代谢处理,也受到氮分解代谢调节剂 NIT-2 的调控。使用 RNA 测序结合 DNA 亲和力纯化测序,我们对 NIT-2 和途径特异性转录因子 NIT-4 和 AMN-1 在直接调控参与氮利用的基因中的作用进行了调查。尽管先前的研究表明,氮响应基因的激活可能需要途径特异性转录因子和 NIT-2 的启动子结合,但我们的数据表明,途径特异性转录因子调节参与特定氮源分解代谢的基因,而 NIT-2 调节参与利用所有非首选氮源的基因,如氮转运蛋白。这些转录因子共同构成了一个营养感应网络,使 细胞能够调节氮的利用。

相似文献

3
The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6003-6013. doi: 10.1073/pnas.1915611117. Epub 2020 Feb 28.
4
Regulation of nutrient utilization in filamentous fungi.
Appl Microbiol Biotechnol. 2023 Oct;107(19):5873-5898. doi: 10.1007/s00253-023-12680-4. Epub 2023 Aug 4.
6
Cooperative action of the NIT2 and NIT4 transcription factors upon gene expression in Neurospora crassa.
Curr Genet. 2003 Feb;42(5):260-7. doi: 10.1007/s00294-002-0362-3. Epub 2003 Jan 14.
7
VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa.
PLoS Genet. 2014 Aug 21;10(8):e1004500. doi: 10.1371/journal.pgen.1004500. eCollection 2014 Aug.
8
Regulatory Networks Governing Methionine Catabolism into Volatile Organic Sulfur-Containing Compounds in Clonostachys .
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01840-18. Print 2018 Nov 15.

引用本文的文献

1
A genomic perspective on fungal diversity and evolution.
Nat Rev Microbiol. 2025 Jun 30. doi: 10.1038/s41579-025-01195-6.
2
Omics advancements towards exploring arsenic toxicity and tolerance in plants: a review.
Planta. 2025 Mar 5;261(4):79. doi: 10.1007/s00425-025-04646-9.
4
Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2402944121. doi: 10.1073/pnas.2402944121. Epub 2024 Jul 25.
7
Regulation of nutrient utilization in filamentous fungi.
Appl Microbiol Biotechnol. 2023 Oct;107(19):5873-5898. doi: 10.1007/s00253-023-12680-4. Epub 2023 Aug 4.
8
The biological relevance of the FspTF transcription factor, homologous of Bqt4, in sp. associated with the ambrosia beetle .
Front Microbiol. 2023 Jul 14;14:1224096. doi: 10.3389/fmicb.2023.1224096. eCollection 2023.
9
Factors and Methods for the Detection of Gene Expression Regulation.
Biomolecules. 2023 Feb 6;13(2):304. doi: 10.3390/biom13020304.
10
Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability.
PLoS Biol. 2023 Jan 5;21(1):e3001961. doi: 10.1371/journal.pbio.3001961. eCollection 2023 Jan.

本文引用的文献

1
The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6003-6013. doi: 10.1073/pnas.1915611117. Epub 2020 Feb 28.
3
Network of nutrient-sensing pathways and a conserved kinase cascade integrate osmolarity and carbon sensing in .
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8665-E8674. doi: 10.1073/pnas.1707713114. Epub 2017 Sep 25.
4
Network reconstruction and systems analysis of plant cell wall deconstruction by .
Biotechnol Biofuels. 2017 Sep 21;10:225. doi: 10.1186/s13068-017-0901-2. eCollection 2017.
6
Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape.
Cell. 2016 May 19;165(5):1280-1292. doi: 10.1016/j.cell.2016.04.038.
8
Intracellular growth is dependent on tyrosine catabolism in the dimorphic fungal pathogen Penicillium marneffei.
PLoS Pathog. 2015 Mar 26;11(3):e1004790. doi: 10.1371/journal.ppat.1004790. eCollection 2015 Mar.
9
FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species.
Bioinformatics. 2015 Feb 1;31(3):445-6. doi: 10.1093/bioinformatics/btu627. Epub 2014 Oct 7.
10
Determination and inference of eukaryotic transcription factor sequence specificity.
Cell. 2014 Sep 11;158(6):1431-1443. doi: 10.1016/j.cell.2014.08.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验