Suppr超能文献

利用蛋白质相互作用网络从大规模磷酸化蛋白质组学数据中阐明信号通路

Elucidation of Signaling Pathways from Large-Scale Phosphoproteomic Data Using Protein Interaction Networks.

作者信息

Rudolph Jan Daniel, de Graauw Marjo, van de Water Bob, Geiger Tamar, Sharan Roded

机构信息

Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Blavatnik School of Computer Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.

Division of Toxicology, Leiden Amsterdam Center for Drug Research, Leiden University, 2311 Leiden, the Netherlands.

出版信息

Cell Syst. 2016 Dec 21;3(6):585-593.e3. doi: 10.1016/j.cels.2016.11.005.

Abstract

Phosphoproteomic experiments typically identify sites within a protein that are differentially phosphorylated between two or more cell states. However, the interpretation of these data is hampered by the lack of methods that can translate site-specific information into global maps of active proteins and signaling networks, especially as the phosphoproteome is often undersampled. Here, we describe PHOTON, a method for interpreting phosphorylation data within their signaling context, as captured by protein-protein interaction networks, to identify active proteins and pathways and pinpoint functional phosphosites. We apply PHOTON to interpret existing and novel phosphoproteomic datasets related to epidermal growth factor and insulin responses. PHOTON substantially outperforms the widely used cutoff approach, providing highly reproducible predictions that are more in line with current biological knowledge. Altogether, PHOTON overcomes the fundamental challenge of delineating signaling pathways from large-scale phosphoproteomic data, thereby enabling translation of environmental cues to downstream cellular responses.

摘要

磷酸化蛋白质组学实验通常会鉴定出蛋白质中在两种或更多细胞状态之间存在差异磷酸化的位点。然而,由于缺乏能够将位点特异性信息转化为活性蛋白和信号网络全局图谱的方法,尤其是磷酸化蛋白质组常常采样不足,这些数据的解读受到了阻碍。在此,我们描述了PHOTON,一种在蛋白质-蛋白质相互作用网络所捕获的信号背景下解释磷酸化数据的方法,以识别活性蛋白和通路并精确确定功能性磷酸化位点。我们应用PHOTON来解读与表皮生长因子和胰岛素反应相关的现有及新的磷酸化蛋白质组数据集。PHOTON显著优于广泛使用的阈值方法,提供了高度可重复的预测结果,且更符合当前的生物学知识。总之,PHOTON克服了从大规模磷酸化蛋白质组数据中描绘信号通路这一基本挑战,从而能够将环境信号转化为下游细胞反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验