Suppr超能文献

哺乳动物视网膜的睫状边缘区产生视网膜神经节细胞。

The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells.

作者信息

Marcucci Florencia, Murcia-Belmonte Veronica, Wang Qing, Coca Yaiza, Ferreiro-Galve Susana, Kuwajima Takaaki, Khalid Sania, Ross M Elizabeth, Mason Carol, Herrera Eloisa

机构信息

Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain.

出版信息

Cell Rep. 2016 Dec 20;17(12):3153-3164. doi: 10.1016/j.celrep.2016.11.016.

Abstract

The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. Because Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2 mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2 cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity.

摘要

低等脊椎动物的视网膜通过整合由睫状缘区(CMZ)祖细胞产生的新神经元而持续生长。哺乳动物的CMZ是否为神经视网膜提供视网膜细胞存在争议。对在CMZ中表达eGFP的胚胎视网膜进行实时成像显示,细胞从CMZ横向迁移到分化的视网膜神经节细胞(RGC)所在的神经视网膜。由于细胞周期调节因子细胞周期蛋白D2在腹侧CMZ中富集,我们分析了细胞周期蛋白D2基因敲除小鼠,以测试CMZ是否为视网膜细胞的来源。细胞周期蛋白D2突变体中的神经发生减少,导致腹侧视网膜中RGC数量减少。与这些发现一致,在白化病视网膜中,同侧RGC产生的减少与细胞周期蛋白D2阳性细胞数量减少相关。这些结果共同表明,哺乳动物的CMZ是一个产生RGC的神经发生位点,其正常生成依赖于细胞周期蛋白D2的活性。

相似文献

1
The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells.
Cell Rep. 2016 Dec 20;17(12):3153-3164. doi: 10.1016/j.celrep.2016.11.016.
2
CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism.
Neuron. 2023 Jan 4;111(1):49-64.e5. doi: 10.1016/j.neuron.2022.10.025. Epub 2022 Nov 8.
3
Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells.
J Comp Neurol. 2019 Jan 1;527(1):212-224. doi: 10.1002/cne.24467. Epub 2018 Aug 22.
4
Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals.
Dev Cell. 2017 Jan 23;40(2):137-150. doi: 10.1016/j.devcel.2016.11.020. Epub 2016 Dec 20.
6
A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates.
Brain Res Dev Brain Res. 2002 Mar 31;134(1-2):31-41. doi: 10.1016/s0165-3806(01)00287-5.
8
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm.
eNeuro. 2016 Dec 2;3(6). doi: 10.1523/ENEURO.0169-16.2016. eCollection 2016 Nov-Dec.
10
Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation.
Gene Expr Patterns. 2014 Jan;14(1):42-54. doi: 10.1016/j.gep.2013.10.003. Epub 2013 Oct 19.

引用本文的文献

1
Semaphorin 3f and post-embryonic regulation of retinal progenitors.
PLoS Genet. 2025 Jul 14;21(7):e1011748. doi: 10.1371/journal.pgen.1011748. eCollection 2025 Jul.
3
EphA4 Mediates EphrinB1-Dependent Adhesion in Retinal Ganglion Cells.
J Neurosci. 2025 Jan 22;45(4):e0043242024. doi: 10.1523/JNEUROSCI.0043-24.2024.
5
Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review.
Front Ophthalmol (Lausanne). 2023 May 17;3:1180142. doi: 10.3389/fopht.2023.1180142. eCollection 2023.
6
7
Retina regeneration: lessons from vertebrates.
Oxf Open Neurosci. 2022 Aug 2;1:kvac012. doi: 10.1093/oons/kvac012. eCollection 2022.
8
Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level.
iScience. 2024 Mar 4;27(4):109397. doi: 10.1016/j.isci.2024.109397. eCollection 2024 Apr 19.
10
Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification.
Trends Genet. 2023 Oct;39(10):736-757. doi: 10.1016/j.tig.2023.06.002. Epub 2023 Jul 8.

本文引用的文献

1
The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue.
Development. 2016 Apr 1;143(7):1099-107. doi: 10.1242/dev.133314. Epub 2016 Feb 18.
2
Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.
Cell Rep. 2015 Nov 10;13(6):1090-1095. doi: 10.1016/j.celrep.2015.09.079. Epub 2015 Oct 29.
3
Zic2 Controls the Migration of Specific Neuronal Populations in the Developing Forebrain.
J Neurosci. 2015 Aug 12;35(32):11266-80. doi: 10.1523/JNEUROSCI.0779-15.2015.
5
A conserved regulatory logic controls temporal identity in mouse neural progenitors.
Neuron. 2015 Feb 4;85(3):497-504. doi: 10.1016/j.neuron.2014.12.052.
6
Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway.
Cell Rep. 2014 Aug 21;8(4):1006-17. doi: 10.1016/j.celrep.2014.06.063. Epub 2014 Jul 31.
8
Sample drift correction following 4D confocal time-lapse imaging.
J Vis Exp. 2014 Apr 12(86):51086. doi: 10.3791/51086.
9
Zic2-dependent axon midline avoidance controls the formation of major ipsilateral tracts in the CNS.
Neuron. 2013 Dec 18;80(6):1392-406. doi: 10.1016/j.neuron.2013.10.007.
10
Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells.
PLoS One. 2013 Sep 20;8(9):e76489. doi: 10.1371/journal.pone.0076489. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验