Suppr超能文献

同侧和对侧视网膜神经节细胞神经发生的时间差异。

Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells.

机构信息

Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York.

Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.

出版信息

J Comp Neurol. 2019 Jan 1;527(1):212-224. doi: 10.1002/cne.24467. Epub 2018 Aug 22.

Abstract

In higher vertebrates, the circuit formed by retinal ganglion cells (RGCs) projecting ipsilaterally (iRGCs) or contralaterally (cRGCs) to the brain permits binocular vision and depth perception. iRGCs and cRGCs differ in their position within the retina and in expression of transcription, guidance and activity-related factors. To parse whether these two populations also differ in the timing of their genesis, a feature of distinct neural subtypes and associated projections, we used newer birthdating methods and cell subtype specific markers to determine birthdate and cell cycle exit more precisely than previously. In the ventrotemporal (VT) retina, i- and cRGCs intermingle and neurogenesis in this zone lags behind RGC production in the rest of the retina where only cRGCs are positioned. In addition, within the VT retina, i- and cRGC populations are born at distinct times: neurogenesis of iRGCs surges at E13, and cRGCs arise as early as E14, not later in embryogenesis as reported. Moreover, in the ventral ciliary margin zone (CMZ), which contains progenitors that give rise to some iRGCs in ventral neural retina (Marcucci et al., 2016), cell cycle exit is slower than in other retinal regions in which progenitors give rise only to cRGCs. Further, when the cell cycle regulator Cyclin D2 is missing, cell cycle length in the CMZ is further reduced, mirroring the reduction of both i- and cRGCs in the Cyclin D2 mutant. These results strengthen the view that differential regulation of cell cycle dynamics at the progenitor level is associated with specific RGC fates and laterality of axonal projection.

摘要

在高等脊椎动物中,视网膜神经节细胞(RGCs)向大脑同侧(iRGCs)或对侧(cRGCs)投射形成的回路允许双眼视觉和深度感知。iRGCs 和 cRGCs 在视网膜中的位置以及转录、导向和活性相关因子的表达上存在差异。为了分析这两个群体在其发生时间上是否也存在差异,即区分神经亚型和相关投射的特征,我们使用了更新的出生标记方法和细胞亚型特异性标记物,比以前更精确地确定出生时间和细胞周期退出时间。在腹侧(VT)视网膜中,i-和 cRGCs 交织在一起,神经发生滞后于视网膜其余部分的 RGC 产生,而只有 cRGCs 位于此处。此外,在 VT 视网膜中,i-和 cRGC 群体在不同的时间出生:iRGC 的神经发生在 E13 时激增,而 cRGC 在 E14 时就出现了,而不是像之前报道的那样在胚胎发生后期出现。此外,在包含一些腹侧神经视网膜中 iRGCs 祖细胞的睫状缘区(CMZ)中,细胞周期退出比其他仅产生 cRGCs 的视网膜区域更慢。此外,当细胞周期调节因子 Cyclin D2 缺失时,CMZ 中的细胞周期长度进一步缩短,这与 Cyclin D2 突变体中 i-和 cRGCs 的减少相吻合。这些结果进一步证实了这样一种观点,即在祖细胞水平上对细胞周期动力学的差异调节与特定的 RGC 命运和轴突投射的偏侧性有关。

相似文献

1
Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells.
J Comp Neurol. 2019 Jan 1;527(1):212-224. doi: 10.1002/cne.24467. Epub 2018 Aug 22.
3
The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells.
Cell Rep. 2016 Dec 20;17(12):3153-3164. doi: 10.1016/j.celrep.2016.11.016.
4
5
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm.
eNeuro. 2016 Dec 2;3(6). doi: 10.1523/ENEURO.0169-16.2016. eCollection 2016 Nov-Dec.
6
CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism.
Neuron. 2023 Jan 4;111(1):49-64.e5. doi: 10.1016/j.neuron.2022.10.025. Epub 2022 Nov 8.
7
Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse.
Proc R Soc Lond B Biol Sci. 1985 Mar 22;224(1234):57-77. doi: 10.1098/rspb.1985.0021.
8
Variations in the proliferative activity of the peripheral retina correlate with postnatal ocular growth in squamate reptiles.
J Comp Neurol. 2019 Oct 1;527(14):2356-2370. doi: 10.1002/cne.24677. Epub 2019 Mar 28.
9
Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections.
Cell Rep. 2023 Aug 29;42(8):112985. doi: 10.1016/j.celrep.2023.112985. Epub 2023 Aug 16.
10
Expression of transcription factors divides retinal ganglion cells into distinct classes.
J Comp Neurol. 2019 Jan 1;527(1):225-235. doi: 10.1002/cne.24172. Epub 2017 Mar 10.

引用本文的文献

1
Retinal ganglion cell migration and viability requires the kinase LKB1.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202410023. Epub 2025 Jun 11.
2
Retinal ganglion cell circuits and glial interactions in humans and mice.
Trends Neurosci. 2024 Dec;47(12):994-1013. doi: 10.1016/j.tins.2024.09.010. Epub 2024 Oct 24.
3
4
CXCL12 promotes the crossing of retinal ganglion cell axons at the optic chiasm.
Development. 2024 Jan 15;151(2). doi: 10.1242/dev.202446.
6
CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism.
Neuron. 2023 Jan 4;111(1):49-64.e5. doi: 10.1016/j.neuron.2022.10.025. Epub 2022 Nov 8.
7
Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells.
Neuroscience. 2023 Jan 1;508:153-173. doi: 10.1016/j.neuroscience.2022.07.013. Epub 2022 Jul 21.
9
Genetic control of retinal ganglion cell genesis.
Cell Mol Life Sci. 2021 May;78(9):4417-4433. doi: 10.1007/s00018-021-03814-w. Epub 2021 Mar 29.
10
Wiring the Binocular Visual Pathways.
Int J Mol Sci. 2019 Jul 4;20(13):3282. doi: 10.3390/ijms20133282.

本文引用的文献

1
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex.
Science. 2017 Dec 8;358(6368):1318-1323. doi: 10.1126/science.aap8809.
2
Loss of Brap Results in Premature G1/S Phase Transition and Impeded Neural Progenitor Differentiation.
Cell Rep. 2017 Aug 1;20(5):1148-1160. doi: 10.1016/j.celrep.2017.07.018.
3
SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System.
Neuron. 2017 Mar 8;93(5):1110-1125.e5. doi: 10.1016/j.neuron.2017.01.029. Epub 2017 Feb 16.
4
The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells.
Cell Rep. 2016 Dec 20;17(12):3153-3164. doi: 10.1016/j.celrep.2016.11.016.
5
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm.
eNeuro. 2016 Dec 2;3(6). doi: 10.1523/ENEURO.0169-16.2016. eCollection 2016 Nov-Dec.
6
Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.
Cell Rep. 2015 Nov 10;13(6):1090-1095. doi: 10.1016/j.celrep.2015.09.079. Epub 2015 Oct 29.
7
Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice.
Neuron. 2015 May 20;86(4):1091-1099. doi: 10.1016/j.neuron.2015.04.019.
8
The types of retinal ganglion cells: current status and implications for neuronal classification.
Annu Rev Neurosci. 2015 Jul 8;38:221-46. doi: 10.1146/annurev-neuro-071714-034120. Epub 2015 Apr 9.
9
Transient ipsilateral retinal ganglion cell projections to the brain: Extent, targeting, and disappearance.
Dev Neurobiol. 2015 Dec;75(12):1385-401. doi: 10.1002/dneu.22291. Epub 2015 Mar 30.
10
Connecting the retina to the brain.
ASN Neuro. 2014 Dec 12;6(6). doi: 10.1177/1759091414562107. Print 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验