Suppr超能文献

基于质谱的草药药物研发。

Mass spectrometry-driven drug discovery for development of herbal medicine.

机构信息

Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China.

出版信息

Mass Spectrom Rev. 2018 May;37(3):307-320. doi: 10.1002/mas.21529. Epub 2016 Dec 23.

Abstract

Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes.

摘要

草药(HM)在鉴定产品化合物方面为药物发现过程做出了重大贡献。目前,人们越来越关注从 HM 的天然化合物中发现药物。尽管现代分析技术发展迅速,但药物发现仍然是一个困难且漫长的过程。幸运的是,质谱(MS)可以为我们提供有用的药物发现结构信息,已被认为是在后基因组时代推进 HM 药物发现的一种灵敏、快速和高通量的技术。开发一种与 MS 平台集成的高效、高质量、高通量筛选方法对于从天然产物中早期筛选候选药物分子至关重要。我们开发了一种新的基于 MS 的 chinmedomics 策略,能够捕获候选分子,促进在早期阶段鉴定新型化学结构;基于 MS 的 chinmedomics 指导的天然产物发现可能为早期筛选针对疾病的草药有效成分提供有效的工具。本综述涵盖了使用 MS 及其相关技术和方法进行天然产物发现、生物标志物鉴定和作用机制的研究。它还强调了适用于通过最近的成功案例说明先导化合物发现的高通量 chinmedomics 筛选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验