Suppr超能文献

扩散加权磁共振成像作为宫颈癌放化疗后预后的预测指标

Diffusion-Weighted Magnetic Resonance Imaging as a Predictor of Outcome in Cervical Cancer After Chemoradiation.

作者信息

Ho Jennifer C, Allen Pamela K, Bhosale Priya R, Rauch Gaiane M, Fuller Clifton D, Mohamed Abdallah S R, Frumovitz Michael, Jhingran Anuja, Klopp Ann H

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Int J Radiat Oncol Biol Phys. 2017 Mar 1;97(3):546-553. doi: 10.1016/j.ijrobp.2016.11.015. Epub 2016 Nov 17.

Abstract

PURPOSE

To determine whether apparent diffusion coefficient (ADC) value is predictive of survival after definitive chemoradiation for cervical cancer independent of established imaging and clinical prognostic factors.

METHODS AND MATERIALS

Between 2011 and 2013, the pretreatment MRI scans for 69 patients treated with definitive chemoradiation for newly diagnosed cervical cancer were retrieved. Scans were acquired with a 1.5-T magnetic resonance scanner, including diffusion-weighted imaging sequences. Mean ADC value was measured within a region of interest in the primary cervical cancer on the baseline MRI scan. Baseline tumor maximum standardized uptake value on positron emission tomography/computed tomography was determined by the reading radiologist. Treatment included external beam radiation therapy to the pelvis followed by brachytherapy in 97%, and with concurrent weekly cisplatin in 99% of patients. Univariate and multivariate analyses were done to investigate the association of clinical and imaging variables with disease control and survival endpoints using a Cox proportional hazard test.

RESULTS

Median follow-up was 16.7 months (range, 3.1-44.2 months). The 1-year overall survival, locoregional recurrence-free survival, and disease-free survival rates were 91%, 86%, and 74%, respectively. The median ADC value was 0.941 × 10 mm/s (range, 0.256-1.508 × 10 mm/s). The median standardized uptake value in the primary tumor was 15 (range, 6.2-43.4). In multivariate analysis, higher ADC value (hazard ratio [HR] 0.36, 95% confidence interval [CI] 0.15-0.85, P=.02), higher stage (HR 2.4, 95% CI 1.1-5.5, P=.033), and nonsquamous histology (HR 0.23, 95% CI 0.07-0.82, P=.024) were independent predictors of disease-free survival.

CONCLUSIONS

The mean ADC value of the primary tumor on pretreatment MRI was the only imaging feature that was an independent predictor of disease-free survival in cervical cancer patients treated with chemoradiation. Further validation will be needed to determine whether ADC values may prove useful in identifying cervical patients at high risk of recurrence.

摘要

目的

确定表观扩散系数(ADC)值是否能独立于已确立的影像学和临床预后因素,预测宫颈癌根治性放化疗后的生存率。

方法和材料

2011年至2013年期间,检索了69例新诊断宫颈癌患者接受根治性放化疗的治疗前MRI扫描资料。扫描使用1.5-T磁共振扫描仪进行,包括扩散加权成像序列。在基线MRI扫描的原发性宫颈癌感兴趣区内测量平均ADC值。由放射科医生确定正电子发射断层扫描/计算机断层扫描上原发性肿瘤的基线最大标准化摄取值。治疗包括盆腔外照射放疗,97%的患者随后接受近距离放疗,99%的患者同时每周接受顺铂治疗。采用Cox比例风险检验进行单因素和多因素分析,以研究临床和影像学变量与疾病控制及生存终点的相关性。

结果

中位随访时间为16.7个月(范围3.1 - 44.2个月)。1年总生存率、局部区域无复发生存率和无病生存率分别为91%、86%和74%。中位ADC值为0.941×10⁻³mm²/s(范围0.256 - 1.508×10⁻³mm²/s)。原发性肿瘤的中位标准化摄取值为15(范围6.2 - 43.4)。在多因素分析中,较高的ADC值(风险比[HR]0.36,95%置信区间[CI]0.15 - 0.85,P = 0.02)、较高的分期(HR 2.4,95% CI 1.1 - 5.5,P = 0.033)和非鳞状组织学(HR 0.23,95% CI 0.07 - 0.82,P = 0.024)是无病生存的独立预测因素。

结论

治疗前MRI上原发性肿瘤的平均ADC值是接受放化疗的宫颈癌患者无病生存的唯一独立预测影像学特征。需要进一步验证以确定ADC值是否可用于识别复发高危的宫颈癌患者。

相似文献

8
Outcomes of chemoradiotherapy in cervical cancer--the Western Australian experience.宫颈癌放化疗的结果——西澳大利亚的经验。
Int J Radiat Oncol Biol Phys. 2012 Mar 15;82(4):1431-8. doi: 10.1016/j.ijrobp.2011.04.047. Epub 2011 Jun 2.

引用本文的文献

2
CD133/ABCC5 cervical cancer cells exhibit cancer stem cell properties.CD133/ABCC5 宫颈癌细胞具有癌症干细胞特性。
Heliyon. 2024 Aug 29;10(17):e37066. doi: 10.1016/j.heliyon.2024.e37066. eCollection 2024 Sep 15.

本文引用的文献

7
Global cancer statistics, 2012.全球癌症统计数据,2012 年。
CA Cancer J Clin. 2015 Mar;65(2):87-108. doi: 10.3322/caac.21262. Epub 2015 Feb 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验