Suppr超能文献

相似文献

1
WIND1 Promotes Shoot Regeneration through Transcriptional Activation of in Arabidopsis.
Plant Cell. 2017 Jan;29(1):54-69. doi: 10.1105/tpc.16.00623. Epub 2016 Dec 23.
2
WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus.
Dev Biol. 2018 Oct 1;442(1):40-52. doi: 10.1016/j.ydbio.2018.07.006. Epub 2018 Jul 17.
3
WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed.
J Plant Res. 2015 May;128(3):389-97. doi: 10.1007/s10265-015-0714-y. Epub 2015 Mar 26.
4
Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration.
Plant Cell. 2001 Dec;13(12):2609-18. doi: 10.1105/tpc.010234.
5
The SUMO E3 Ligase SIZ1 Negatively Regulates Shoot Regeneration.
Plant Physiol. 2020 Sep;184(1):330-344. doi: 10.1104/pp.20.00626. Epub 2020 Jul 1.
6
The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis.
Curr Biol. 2011 Mar 22;21(6):508-14. doi: 10.1016/j.cub.2011.02.020.
8
The Type-B Cytokinin Response Regulator ARR1 Inhibits Shoot Regeneration in an ARR12-Dependent Manner in Arabidopsis.
Plant Cell. 2020 Jul;32(7):2271-2291. doi: 10.1105/tpc.19.00022. Epub 2020 May 12.
10
The Arabidopsis transcription factor ESR1 induces in vitro shoot regeneration through transcriptional activation.
Plant Physiol Biochem. 2008 Dec;46(12):1045-50. doi: 10.1016/j.plaphy.2008.07.007. Epub 2008 Jul 25.

引用本文的文献

7
Association mapping and identification of candidate genes for callus induction and regeneration using sorghum mature seeds.
Front Plant Sci. 2025 Apr 24;16:1430141. doi: 10.3389/fpls.2025.1430141. eCollection 2025.
9
Regeneration and defense: unveiling the molecular interplay in plants.
New Phytol. 2025 Jun;246(6):2484-2494. doi: 10.1111/nph.70171. Epub 2025 Apr 27.
10
Current Advancement and Future Prospects in Simplified Transformation-Based Plant Genome Editing.
Plants (Basel). 2025 Mar 12;14(6):889. doi: 10.3390/plants14060889.

本文引用的文献

1
PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis.
Nat Plants. 2015 Jun 29;1:15089. doi: 10.1038/nplants.2015.89.
2
Plant regeneration: cellular origins and molecular mechanisms.
Development. 2016 May 1;143(9):1442-51. doi: 10.1242/dev.134668.
3
Control of plant cell differentiation by histone modification and DNA methylation.
Curr Opin Plant Biol. 2015 Dec;28:60-7. doi: 10.1016/j.pbi.2015.09.004. Epub 2015 Oct 24.
4
PLETHORA Genes Control Regeneration by a Two-Step Mechanism.
Curr Biol. 2015 Apr 20;25(8):1017-30. doi: 10.1016/j.cub.2015.02.022. Epub 2015 Mar 26.
5
WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed.
J Plant Res. 2015 May;128(3):389-97. doi: 10.1007/s10265-015-0714-y. Epub 2015 Mar 26.
6
WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis.
Plant Cell. 2014 Mar;26(3):1081-93. doi: 10.1105/tpc.114.122887. Epub 2014 Mar 18.
7
Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.
Front Plant Sci. 2013 Oct 1;4:383. doi: 10.3389/fpls.2013.00383. eCollection 2013.
8
Plant callus: mechanisms of induction and repression.
Plant Cell. 2013 Sep;25(9):3159-73. doi: 10.1105/tpc.113.116053. Epub 2013 Sep 27.
9
GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling.
Nature. 2013 Aug 22;500(7463):422-6. doi: 10.1038/nature12478.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验