Majoros William H, Campbell Michael S, Holt Carson, DeNardo Erin K, Ware Doreen, Allen Andrew S, Yandell Mark, Reddy Timothy E
Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.
Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA.
Bioinformatics. 2017 May 15;33(10):1437-1446. doi: 10.1093/bioinformatics/btw799.
The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains.
We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus.
ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE.
myandell@genetics.utah.edu or tim.reddy@duke.edu.
Supplementary information is available at Bioinformatics online.
准确解读基因变异对于表征基因型 - 表型关联至关重要。由于基因变异的影响在很大程度上取决于其局部基因组背景,因此准确的基因组注释必不可少。此外,由于某些变异有可能破坏或改变基因结构,使用考虑个体或品系间基因结构差异的个性化注释有助于变异解读工作。
我们描述了一套软件工具,用于识别可能由序列变异导致的基因结构功能变化。ACE(“评估外显子变化”)将分阶段的基因型调用转换为一系列明确的单倍型序列,将转录本注释映射到这些序列上,检测基因结构变化及其可能的影响,并识别几类可能的功能丧失。ACE预测的新转录本通常得到剪接RNA测序读数的支持,当有个体特异性基因组序列时,可用于改善读数比对和转录本定量。使用公开可用的RNA测序数据,我们表明ACE预测证实了关于无义介导衰变定量影响的早期结果,并且我们表明预测的功能丧失事件与整个人类群体对突变的不耐受模式高度一致。ACE可以很容易地应用于包括动物和植物在内的多种物种,使其成为基于真核生物群体的重测序项目中广泛有用的工具,特别是用于评估一个位点上所有变异的联合影响。
ACE用开源C++和Perl编写,可从geneprediction.org/ACE获取。
myandell@genetics.utah.edu或tim.reddy@duke.edu。
补充信息可在《生物信息学》在线获取。