Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Via C. Colombo 112, 00147 Rome, Italy; Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden.
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Cambridge, MA, USA.
Environ Int. 2017 Feb;99:234-244. doi: 10.1016/j.envint.2016.11.024. Epub 2016 Dec 23.
Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM=0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data.
空气污染对健康的影响,尤其是细颗粒物(PM),已经得到了广泛的研究。然而,大多数研究都依赖于城市地区少数几个监测站进行短期评估,或者依赖于土地利用/扩散模型进行长期评估,而且这些研究也主要集中在城市。最近,精细分辨率卫星数据的可用性为在广泛的时空范围内估算空气污染物的日浓度提供了机会。意大利缺乏一个稳健且经过验证的高分辨率、时空分辨率颗粒物模型。复杂的地形以及来自自然和人为源的空气混合物都是难以解决的巨大挑战。我们将多角度大气校正(MAIAC)算法的气溶胶光学深度(AOD)精细分辨率数据、地面水平 PM 测量值、土地利用变量和气象参数结合到一个四阶段混合模型框架中,以推导出 2006-2012 年意大利 1 平方公里网格的日 PM 浓度估计值。我们为每年的模型应用 10 折交叉验证(CV)来检查模型的性能。我们的模型显示出良好的拟合度,平均 CV-R2=0.65,偏差较小(预测 PM 与观测 PM 的平均斜率为 0.99)。在北部意大利(波河河谷)和大型城市群(如罗马)以及背景监测站,以及在冬季,外推预测更为准确。生成的浓度图显示了特定区域(波河河谷、主要工业区和大都市区)的平均 PM 水平最高,并且随着时间的推移呈下降趋势。我们对意大利全境 PM 浓度的日预测将首次允许在全国范围内估算空气污染的长期和短期影响,即使在缺乏监测数据的地区。