Suppr超能文献

使用机器学习技术量化环境变量对骑自行车者接触细颗粒物的影响。

Quantifying the contribution of environmental variables to cyclists' exposure to PM using machine learning techniques.

作者信息

Rodríguez Núñez Martín, Tavera Busso Iván, Carreras Hebe Alejandra

机构信息

Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

Departamento de Química, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

出版信息

Heliyon. 2024 Jan 15;10(2):e24724. doi: 10.1016/j.heliyon.2024.e24724. eCollection 2024 Jan 30.

Abstract

Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the factors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists' exposure to fine particulate matter (PM) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM predictions, with a minimum root mean square error value of 5.62 μg m. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.

摘要

骑自行车的人特别容易受到与出行相关的空气污染影响。了解增加暴露的因素对于促进更健康的城市环境至关重要。机器学习模型已成功预测空气污染物浓度,但它们往往比经典统计模型(如线性模型)更难解释。本研究旨在开发一种预测模型,以评估城市环境中骑自行车者对细颗粒物(PM)的暴露情况。该模型是使用地理时间参考数据和机器学习技术生成的。我们探索了几种模型,发现梯度提升机器学习模型最适合PM预测,最小均方根误差值为5.62μg/m。对骑自行车者暴露影响最大的变量是时间变量(月份、星期几和一天中的时间),其次是气象变量,如温度、相对湿度、风速、风向和大气压力。此外,我们考虑了与空间特征部分相关的相关属性。这些属性包括街道类型、植被密度以及特定街道上的车辆流量,车辆流量量化了每分钟通过给定地点的车辆数量。远离车辆交通的自行车道中的平均PM浓度低于沿街自行车道中的浓度。这些结果强调了在设计包括公交线路在内的公共交通路线时,需要考虑自行车道网络。这种战略规划旨在改善城市景观中的空气质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e871/10828810/26f53fc640cb/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验